Joint analysis of transcriptional and post-transcriptional brain tumor data: searching for emergent properties of cellular systems

Background: Advances in biotechnology offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. However, to date, most computational and algorithmic efforts have been directed at mining data from each of these molecular levels (genomic, transcriptional, etc.) separately. In view of the rapid advances in technology (new generation sequencing, high-throughput proteomics) it is important to address the problem of analyzing these data as a whole, i.e.

MANIA: A Gene Network Reverse Algorithm for Compounds Mode-of-Action and Genes Interactions Inference

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles AND (ii) mode-of-action of the components that can trigger changes in the system.

Finding communities in directed networks by PageRank random walk induced network embedding

Community structure has been found to exist ubiquitously in many different kinds of real world complex networks. Most of the previous literature ignores edge directions and applies methods designed for community finding in undirected networks to find communities. Here, we address the problem of finding communities in directed networks. Our proposed method uses PageRank random walk induced network embedding to transform a directed network into an undirected one, where the information on edge directions is effectively incorporated into the edge weights.

A comprehensive molecular interaction map for rheumatoid arthritis

Background: Computational biology contributes to a variety of areas related to life sciences and, due to the growing impact of translational medicine - the scientific approach to medicine in tight relation with basic science, it is becoming an important player in clinical-related areas. In this study, we use computation methods in order to improve our understanding of the complex interactions that occur between molecules related to Rheumatoid Arthritis (RA).

Circuits and systems for high-throughput biology

The importance of circuits and systems for high-throughput biological data acquisition in biomedical research are discussed. High-throughput biological data acquisition and processing technologies have shifted the focus of biological research from the the traditional experimental science to that of information science. Powerful computation and communication means can be applied to a very large amount of apparently incoherent data coming from biomedical research.