PRISMA L1 and L2 Performances within the PRISCAV Project: The Pignola Test Site in Southern Italy

In March 2019, the PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyper-spectral satellite was launched by the Italian Space Agency (ASI), and it is currently operational on a global basis. The mission includes the hyperspectral imager PRISMA working in the 400-2500 nm spectral range with 237 bands and a panchromatic (PAN) camera (400-750 nm). This paper presents an evaluation of the PRISMA top-of-atmosphere (TOA) L1 products using different in situ measurements acquired over a fragmented rural area in Southern Italy (Pignola) between October 2019 and July 2021.

Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams

The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence.

AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching

We describe preliminary results from a multiobjective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on highend parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors.

Finding communities in directed networks by PageRank random walk induced network embedding

Community structure has been found to exist ubiquitously in many different kinds of real world complex networks. Most of the previous literature ignores edge directions and applies methods designed for community finding in undirected networks to find communities. Here, we address the problem of finding communities in directed networks. Our proposed method uses PageRank random walk induced network embedding to transform a directed network into an undirected one, where the information on edge directions is effectively incorporated into the edge weights.

Mining Gene Sets for Measuring Similarities

In recent years, the development of high throughput devices for the massive parallel analyses of genomic data has lead to the generation of large amount of new biological evidences and has triggered the proliferation of data mining algorithms for the extraction of meaningful information. Microarrays for gene expression analyses are part of this revolution and provide important insight in molecular biology often in the form of coherent sets of genes representing previously uncharacterized processes.

TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders

The study of complex hereditary diseases is a very challenging area of research. The expanding set of in silico approaches offers a flourishing ground for the acceleration of meaningful findings in this area by exploitation of rich and diverse sources of omic data. These approaches are cheap, flexible, extensible, often complementary and can continuously integrate new information and tests to improve the selection of genes responsible for hereditary diseases.

Enhanced modularity-based community detection by random walk network preprocessing

The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems' complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications.