A comprehensive molecular interaction map for rheumatoid arthritis

Background: Computational biology contributes to a variety of areas related to life sciences and, due to the growing impact of translational medicine - the scientific approach to medicine in tight relation with basic science, it is becoming an important player in clinical-related areas. In this study, we use computation methods in order to improve our understanding of the complex interactions that occur between molecules related to Rheumatoid Arthritis (RA).

MANIA: A GENE NETWORK REVERSE ALGORITHM FOR COMPOUNDS MODE-OF-ACTION AND GENES INTERACTIONS INFERENCE

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based solely on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles and (ii) mode-of-action of the components that can trigger changes in the system.

Identification of noninvasive imaging surrogates for brain tumor gene-expression modules

Glioblastoma multiforme (GBM) is,the most common and lethal primary brain tumor in adults. We combined neuroimaging and DNA microarray analysis to create a multidimensional map of gene-expression patterns in GBM that provided clinically relevant insights into tumor biology. Tumor contrast enhancement and mass effect predicted activation of specific hypoxia and proliferation gene-expression programs, respectively.

Finding communities in directed networks by PageRank random walk induced network embedding

Community structure has been found to exist ubiquitously in many different kinds of real world complex networks. Most of the previous literature ignores edge directions and applies methods designed for community finding in undirected networks to find communities. Here, we address the problem of finding communities in directed networks. Our proposed method uses PageRank random walk induced network embedding to transform a directed network into an undirected one, where the information on edge directions is effectively incorporated into the edge weights.

Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity

With the expanding availability of sequencing technologies, research previously centered on the human genome can now afford to include the study of humans' internal ecosystem (human microbiome). Given the scale of the data involved in this metagenomic research (two orders of magnitude larger than the human genome) and their importance in relation to human health, it is crucial to guarantee (along with the appropriate data collection and taxonomy) proper tools for data analysis.

An S-System Parameter Estimation Method (SPEM) for Biological Networks

Advances in experimental biology, coupled with advances in computational power, bring new challenges to the interdisciplinary field of computational biology. One such broad challenge lies in the reverse engineering of gene networks, and goes from determining the structure of static networks, to reconstructing the dynamics of interactions from time series data. Here, we focus our attention on the latter area, and in particular, on parameterizing a dynamic network of oriented interactions between genes.

Enhanced modularity-based community detection by random walk network preprocessing

The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems' complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications.

Extracting weights from edge directions to find communities in directed networks

Community structures are found to exist ubiquitously in real-world complex networks. We address here the problem of community detection in directed networks. Most of the previous literature ignores edge directions and applies methods designed for community detection in undirected networks, which discards valuable information and often fails when different communities are defined on the basis of incoming and outgoing edges. We suggest extracting information about edge directions using a PageRank random walk and translating such information into edge weights.