LEARNING OVERLAPPING COMMUNITIES IN COMPLEX NETWORKS VIA NON-NEGATIVE MATRIX FACTORIZATION

Community structure is an important topological phenomenon typical of complex networks. Accurately unveiling communities is thus crucial to understand and capture the many-faceted nature of complex networks. Communities in real world frequently overlap, i.e. nodes can belong to more than one community. Therefore, quantitatively evaluating the extent to which a node belongs to a community is a key step to find overlapping boundaries between communities. Non-negative matrix factorization (NMF) is a technique that has been used to detect overlapping communities.

Mining Gene Sets for Measuring Similarities

In recent years, the development of high throughput devices for the massive parallel analyses of genomic data has lead to the generation of large amount of new biological evidences and has triggered the proliferation of data mining algorithms for the extraction of meaningful information. Microarrays for gene expression analyses are part of this revolution and provide important insight in molecular biology often in the form of coherent sets of genes representing previously uncharacterized processes.

Mechanotransduction map: simulation model, molecular pathway, gene set

Motivation: Mechanotransduction-the ability to output a biochemical signal from a mechanical input-is related to the initiation and progression of a broad spectrum of molecular events. Yet, the characterization of mechanotransduction lacks some of the most basic tools as, for instance, it can hardly be recognized by enrichment analysis tools, nor could we find any pathway representation. This greatly limits computational testing and hypothesis generation on mechanotransduction biological relevance and involvement in disease or physiological mechanisms.

Partitioning networks into communities by message passing

Community structures are found to exist ubiquitously in a number of systems conveniently represented as complex networks. Partitioning networks into communities is thus important and crucial to both capture and simplify these systems' complexity. The prevalent and standard approach to meet this goal is related to the maximization of a quality function, modularity, which measures the goodness of a partition of a network into communities. However, it has recently been found that modularity maximization suffers from a resolution limit, which prevents its effectiveness and range of applications.

Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients

Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens.

NIAPU: Network-Informed Adaptive Positive-Unlabeled learning for disease gene identification

Motivation: Gene-disease associations are fundamental for understanding disease etiology and developing effective interventions and treatments. Identifying genes not yet associated with a disease due to a lack of studies is a challenging task in which prioritization based on prior knowledge is an important element. The computational search for new candidate disease genes may be eased by positive-unlabeled learning, the machine learning setting in which only a subset of instances are labeled as positive while the rest of the data set is unlabeled.