Nonlocal finite dffierence discretization of a class of renewal equation models for epidemics

In this paper we consider a non-standard discretization to a Volterra integro-dierential system which includes a number of age-of-infection models in the literature. The aim is to provide a general framework to analyze the proposed scheme for the numerical solution of a class of problems whose continuous dynamic is well known in the literature and allow a deeper analysis in cases where the theory lacks

Lattice Boltzmann Modeling of Cholesteric Liquid Crystal Droplets Under an Oscillatory Electric Field

We numerically study the dynamics of quasi-two dimensional cholesteric liquid crystal droplets in the presence of a time-dependent electric field, rotating at constant angular velocity. A surfactant sitting at the droplet interface is also introduced to prevent droplet coalescence. The dynamics is modeled following a hybrid numerical approach, where a standard lattice Boltzmann technique solves the Navier-Stokes equation and a finite difference scheme integrates the evolution equations of liquid crystal and surfactant.

A multi-GPU aggregation-based AMG preconditioner for iterative linear solvers

We present and release in open source format a sparse linear solver which efficiently exploits heterogeneous parallel computers. The solver can be easily integrated into scientific applications that need to solve large and sparse linear systems on modern parallel computers made of hybrid nodes hosting Nvidia Graphics Processing Unit (GPU) accelerators.

Rational QZ Steps with perfect shifts

In this paper we analyze the stability of the problem of performing a rational QZ$step with a shift that is an eigenvalue of a given regular pencil H-lambda K in unreduced Hessenberg-Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg-Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets ``blurred'' and precludes the deflation of the given shift at the top of the pencil.

Computing integrals with an exponential weight on the real axis in floating point arithmetic

The aim of this work is to propose a fast and reliable algorithm for computing integrals of the type $$\int_{-\infty}^{\infty} f(x) e^{\scriptstyle -x^2 -\frac{\scriptstyle 1}{\scriptstyle x^2}} dx,$$ where $f(x)$ is a sufficiently smooth function, in floating point arithmetic. The algorithm is based on a product integration rule, whose rate of convergence depends only on the regularity of $f$, since the coefficients of the rule are ``exactly'' computed by means of suitable recurrence relations here derived. We prove stability and convergence in the space of locally continuous functions

Excluded volume effects on active ring polymers

The properties of semiflexible active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain subject to tangential active forces, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. Both phantom polymers and chains with excluded-volume interactions are considered. The size and shape strongly depend on the relative ratio of the persistence length to the ring length as well as on the active force.

The variational approach to s-fractional heat flows and the limit cases s-+0+and s-+1-

This paper deals with the limit cases for s-fractional heat flows in a cylindrical domain, with homogeneous Dirichlet boundary conditions, as s-+ 0+ and s-+ 1-. We describe the fractional heat flows as minimizing move-ments of the corresponding Gagliardo seminorms, with re-spect to the L2 metric. To this end, we first provide a Gamma-convergence analysis for the s-Gagliardo seminorms as s-+ 0+ and s-+ 1-; then, we exploit an abstract stability result for minimizing movements in Hilbert spaces, with respect to a sequence of Gamma-converging uniformly lambda-convex energy function-als.

Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy

We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities.

RNASeqGUI: a GUI for analysing RNA-Seq data

Summary: We present RNASeqGUI R package, a graphical user interface (GUI) for the identification of differentially expressed genes across multiple biological conditions. This R package includes some wellk-nown RNA-Seq tools, available at www.bioconductor.org. RNASeqGUI package is not just a collection of some known methods and functions, but it is designed to guide the user during the entire analysis process. RNASeqGUI package is mainly addressed to those users who have little experience with command-line software.