MANIA: A GENE NETWORK REVERSE ALGORITHM FOR COMPOUNDS MODE-OF-ACTION AND GENES INTERACTIONS INFERENCE

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based solely on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles and (ii) mode-of-action of the components that can trigger changes in the system.

MANIA: A Gene Network Reverse Algorithm for Compounds Mode-of-Action and Genes Interactions Inference

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles AND (ii) mode-of-action of the components that can trigger changes in the system.

Correlation enhanced modularity-based belief propagation method for community detection in networks

Community structure is an important feature of networks, and the correct detection of communities is a fundamental problem in network analysis. Statistical inference has recently been proposed for successful detection, provided the number of communities can be appropriately estimated a priori. In the absence of such information, model selection by determination of the number of communities remains an issue. We show here that correlation between communities from a highly parceled partition can be used to estimate a narrow range of variation for the real number of communities.

Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties

Background: High-throughput (omic) data have become more widespread in both quantity and frequency of use, thanks to technological advances, lower costs and higher precision. Consequently, computational scientists are confronted by two parallel challenges: on one side, the design of efficient methods to interpret each of these data in their own right (gene expression signatures, protein markers, etc.) and, on the other side, realization of a novel, pressing request from the biological field to design methodologies that allow for these data to be interpreted as a whole, i.e.

Finding communities in directed networks by PageRank random walk induced network embedding

Community structure has been found to exist ubiquitously in many different kinds of real world complex networks. Most of the previous literature ignores edge directions and applies methods designed for community finding in undirected networks to find communities. Here, we address the problem of finding communities in directed networks. Our proposed method uses PageRank random walk induced network embedding to transform a directed network into an undirected one, where the information on edge directions is effectively incorporated into the edge weights.

TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders

The study of complex hereditary diseases is a very challenging area of research. The expanding set of in silico approaches offers a flourishing ground for the acceleration of meaningful findings in this area by exploitation of rich and diverse sources of omic data. These approaches are cheap, flexible, extensible, often complementary and can continuously integrate new information and tests to improve the selection of genes responsible for hereditary diseases.

SPNConverter: a new link between static and dynamic complex network analysis

The signaling Petri net (SPN) simulator, designed to provide insights into the trends of molecules' activity levels in response to an external stimulus, contributes to the systems biology necessity of analyzing the dynamics of large-scale cellular networks. Implemented into the freely available software, BioLayout Express(3D), the simulator is publicly available and easy to use, provided the input files are prepared in the GraphML format, typically using the network editing software, yEd, and standards specific to the software.

PRISMA L1 and L2 Performances within the PRISCAV Project: The Pignola Test Site in Southern Italy

In March 2019, the PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyper-spectral satellite was launched by the Italian Space Agency (ASI), and it is currently operational on a global basis. The mission includes the hyperspectral imager PRISMA working in the 400-2500 nm spectral range with 237 bands and a panchromatic (PAN) camera (400-750 nm). This paper presents an evaluation of the PRISMA top-of-atmosphere (TOA) L1 products using different in situ measurements acquired over a fragmented rural area in Southern Italy (Pignola) between October 2019 and July 2021.

AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching

We describe preliminary results from a multiobjective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on highend parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors.