MIMO: an efficient tool for molecular interaction maps overlap

Background: Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps.

PRISMA L1 and L2 Performances within the PRISCAV Project: The Pignola Test Site in Southern Italy

In March 2019, the PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyper-spectral satellite was launched by the Italian Space Agency (ASI), and it is currently operational on a global basis. The mission includes the hyperspectral imager PRISMA working in the 400-2500 nm spectral range with 237 bands and a panchromatic (PAN) camera (400-750 nm). This paper presents an evaluation of the PRISMA top-of-atmosphere (TOA) L1 products using different in situ measurements acquired over a fragmented rural area in Southern Italy (Pignola) between October 2019 and July 2021.

Enhanced pClustering and its applications to gene expression data

Clustering has been one of the most popular methods to discover useful biological insights from DNA microarray. An interesting paradigm is simultaneous clustering of both genes and experiments. This "biclustering "paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a subset of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical advantages, this technique has been rarely applied to actual gene expression data analysis.

AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching

We describe preliminary results from a multiobjective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on highend parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors.

Host-Microbiome Synergistic Control on Sphingolipid Metabolism by Mechanotransduction in Model Arthritis

Chronic inflammatory autoimmune disorders are systemic diseases with increasing incidence and still lack a cure. More recently, attention has been placed in understanding gastrointestinal (GI) dysbiosis and, although important progress has been made in this area, it is currently unclear to what extent microbiome manipulation can be used in the treatment of autoimmune disorders. Via the use of appropriate models, rheumatoid arthritis (RA), a well-known exemplar of such pathologies, can be exploited to shed light on the currently overlooked effects of existing therapies on the GI microbiome.

Vaccination in the elderly: The challenge of immune changes with aging

The unprecedented increase of life expectancy challenges society to protect the elderly from morbidity and mortality making vaccination a crucial mean to safeguard this population. Indeed, infectious diseases, such as influenza and pneumonia, are among the top killers of elderly people in the world. Elderly individuals are more prone to severe infections and less responsive to vaccination prevention, due to immunosenescence combined with the progressive increase of a proinflammatory status characteristic of the aging process (inflammaging).