Roughness as a Route to the Ultimate Regime of Thermal Convection

We use highly resolved numerical simulations to study turbulent Rayleigh-Benard convection in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr = 1 and Ra = [4 x 10(6), 3 x 10(9)]. By varying the wavelength. at a fixed amplitude, we find an optimal wavelength lambda(opt) for which the Nusselt-Rayleigh scaling relation is (Nu - 1 proportional to Ra-0.483), maximizing the heat flux. This is consistent with the upper bound of Goluskin and Doering [J. Fluid Mech.

Integer lattice dynamics for Vlasov-Poisson

We revisit the integer lattice (IL) method to numerically solve the Vlasov-Poisson equations, and show that a slight variant of the method is a very easy, viable, and efficient numerical approach to study the dynamics of self-gravitating, collisionless systems. The distribution function lives in a discretized lattice phase-space, and each time-step in the simulation corresponds to a simple permutation of the lattice sites. Hence, the method is Lagrangian, conservative, and fully time-reversible.

Cyber-insurance survey

Cyber insurance is a rapidly developing area which draws more and more attention of practitioners and researchers. Insurance, an alternative way to deal with residual risks, was only recently applied to the cyber world. The immature cyber insurance market faces a number of unique challenges on the way of its development.In this paper we summarise the basic knowledge about cyber insurance available so far from both market and scientific perspectives. We provide a common background explaining basic terms and formalisation of the area.

ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing.

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown.

Optimized modeling and design of a pcm-enhanced h2 storage

Thermal and mechanical energy storage is pivotal for the effective exploitation of renewable energy sources, thus fostering the transition to a sustainable economy. Hydrogen-based systems are among the most promising solutions for electrical energy storage. However, several technical and economic barriers (e.g., high costs, low energy and power density, advanced material requirements) still hinder the diffusion of such solutions.

Stability and boundedness of numerical approximations to Volterra integral equations

Volterra Integral Equations (VIEs) arise in many problems of real life, as, for example, feedback control theory, population dynamics and fluid dynamics. A reliable numerical simulation of these phenomena requires a careful analysis of the long time behavior of the numerical solution. Here we develop a numerical stability theory for Direct Quadrature (DQ) methods which applies to a quite general and representative class of problems. We obtain stability results under some conditions on the stepsize and, in particular cases, unconditional stability for DQ methods of whatever order.

Easyreporting simplifies the implementation of Reproducible Research layers in R software

During last years "irreproducibility" became a general problem in omics data analysis due to the use of sophisticated and poorly described computational procedures. For avoiding misleading results, it is necessary to inspect and reproduce the entire data analysis as a unified product. Reproducible Research (RR) provides general guidelines for public access to the analytic data and related analysis code combined with natural language documentation, allowing third-parties to reproduce the findings.

Disordered interfaces in soft fluids with suspended colloids

Computer simulations of bi-continuous two-phase fluids with interspersed dumbbells show that, unlike rigid colloids, soft dumbbells do not lead to arrested coarsening. However, they significantly alter the curvature dynamics of the fluid-fluid interface, whose probability density distributions are shown to exhibit (i) a universal spontaneous transition (observed even in the absence of colloids) from an initial broad-shape distribution towards a highly localized one and (ii) super-diffusive dynamics with long-range effects.