Hydrodynamic singular regimes in 1+1 kinetic models and spectral numerical methods

Classical results from spectral theory of stationary linear kinetic equations are applied to efficiently approximate two physically relevant weakly nonlinear kinetic models: a model of chemotaxis involving a biased velocity-redistribution integral term, and a Vlasov-Fokker-Planck (VFP) system. Both are coupled to an attractive elliptic equation producing corresponding mean-field potentials.

Stability and boundedness of numerical approximations to Volterra integral equations

Volterra Integral Equations (VIEs) arise in many problems of real life, as, for example, feedback control theory, population dynamics and fluid dynamics. A reliable numerical simulation of these phenomena requires a careful analysis of the long time behavior of the numerical solution. Here we develop a numerical stability theory for Direct Quadrature (DQ) methods which applies to a quite general and representative class of problems. We obtain stability results under some conditions on the stepsize and, in particular cases, unconditional stability for DQ methods of whatever order.

Limits of fractional Orlicz-Sobolev spaces

Extended versions of the Bourgain-Brezis-Mironescu theorems on the limit as s->1^- of the Gagliardo-Slobodeckij fractional seminorm are established in the Orlicz space setting. The results hold for fractional Orlicz-Sobolev spaces built upon general Young functions, as well. The case of Young functions with an asymptotic linear growth is also considered in connection with the space of functions of bounded variation. An extended version of the Maz'ya-Shaposhnikova theorem on the limit as s->0^+ of the Gagliardo-Slobodeckij fractional seminorm is established in the Orlicz space setting.

An all-leader agent-based model for turning and flocking birds

Starting from recent experimental observations of starlings and jackdaws, we propose a minimal agent-based mathematical model for bird flocks based on a system of second-order delayed stochastic differential equations with discontinuous (both in space and time) right-hand side. The model is specifically designed to reproduce self-organized spontaneous sudden changes of direction, not caused by external stimuli like predator's attacks. The main novelty of the model is that every bird is a potential turn initiator, thus leadership is formed in a group of indistinguishable agents.