The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming

Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalography (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked in the literature, is the putative effect of the choice of the inverse method on the subsequent cortico-cortical coupling analysis. We set out to investigate the impact of three inverse methods on source coherence detection using simulated MEG data. To this end, thousands of randomly located pairs of sources were created.

A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone

Here some issues are studied, related to the numerical solution of Richards' equation in a one dimensional spatial domain by a technique based on the Transversal Method of Lines (TMoL). The core idea of TMoL approach is to semi-discretize the time derivative of Richards' equation: afterward a system of second order differential equations in the space variable is derived as an initial value problem. The computational framework of this method requires both Dirichlet and Neumann boundary conditions at the top of the column. The practical motivation for choosing such a condition is argued.

Simultaneous nonparametric regression in RADWT dictionaries

A new technique for nonparametric regression of multichannel signals is presented. The technique is based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. In particular, two different frames are obtained by two RADWT with different Q-factors that give sparse representations of functions with low and high resonance.

A truly two-dimensional, asymptotic-preserving scheme for a discrete model of radiative transfer

For a four-stream approximation of the kinetic model of radiative transfer with isotropic scattering, a numerical scheme endowed with both truly 2D well-balanced and diffusive asymptotic-preserving properties is derived, in the same spirit as what was done in [L. Gosse and G. Toscani, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 337-342] in the 1D case. Building on former results of Birkhoff and Abu-Shumays [J. Math. Anal. Appl., 28 (1969), pp.

Dynamic Modal Identification of Telecommunication Towers Using Ground Based Radar Interferometry

This work presents a methodology to monitor the dynamic behaviour of tall metallic towers based on ground-based radar interferometry, and apply it to the case of telecommunication towers. Ground-based radar displacement measurements of metallic towers are acquired without installing any Corner Reflector (CR) on the structure. Each structural element of the tower is identified based on its range distance with respect to the radar.