Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL

Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response.

Reputation-Based Composition of Social Web Services

Social Web Services (SWSs) constitute a novel paradigm of service-oriented computing, where Web services, just like humans, sign up in social networks that guarantee, e.g., better service discovery for users and faster replacement in case of service failures. In past work, composition of SWSs was mainly supported by specialised social networks of competitor services and cooperating ones. In this work, we continue this line of research, by proposing a novel SWSs composition procedure driven by the SWSs reputation.

Joining European Scientific Forces to Face Pandemics

Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.

Designing a Network Proximity-Based Drug Repurposing Strategy for COVID-19

The ongoing COVID-19 pandemic still requires fast and effective efforts from all fronts, including epidemiology, clinical practice, molecular medicine, and pharmacology. A comprehensive molecular framework of the disease is needed to better understand its pathological mechanisms, and to design successful treatments able to slow down and stop the impressive pace of the outbreak and harsh clinical symptomatology, possibly via the use of readily available, off-the-shelf drugs.

Semiflexible polymers under oscillatory shear flow

The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions under oscillatory shear flow are investigated by Brownian multi-particle collision dynamics. Two different scenarios will be considered: Filaments with both fixed ends [1] and wall-anchored chains [2]. The results of the numerical studies will be presented and discussed. References [1] A. Lamura, R. G. Winkler Polymers 2019, 11, 737. DOI:10.3390/polym11040737 [2] A. Lamura, R. G. Winkler, G. Gompper pre-print 2021

Rheology of active emulsions with negative effective viscosity

We numerically study by lattice Boltzmann simulations the rheological properties of an active emulsion made of a suspension of an active polar gel embedded in an isotropic passive background. We find that the hexatic equilibrium configuration of polar droplets is highly sensitive to both active injection and external forcing and may either lead to asymmetric unidirectional states which break top-bottom symmetry or symmetric ones. In this latter case, for large enough activity, the system develops a shear thickening regime at low shear rates.

Mass-Preserving Approximation of a Chemotaxis Multi-Domain Transmission Model for Microfluidic Chips

The present work is inspired by the recent developments in laboratory experiments made on chips, where the culturing of multiple cell species was possible. The model is based on coupled reaction-diffusion-transport equations with chemotaxis and takes into account the interactions among cell populations and the possibility of drug administration for drug testing effects.

Confidentiality and availability issues in mobile unattended wireless sensor networks

In Mobile Unattended Wireless Sensor Networks (MUWSNs), nodes sense the environment and store the acquired data until the arrival of a trusted data sink. MUWSNs, other than being a reference model for an increasing number of military and civilian applications, also capture a few important characteristics of emerging computing paradigms like Participatory Sensing (PS). In this paper, we start by identifying the main features and issues of MUWSNs, revising the related work in the area and highlighting their shortcomings.