Wet to dry self-transitions in dense emulsions: From order to disorder and back

One of the most distinctive hallmarks of many-body systems far from equilibrium is the spontaneous emergence of order under conditions where disorder would be plausibly expected. Here, we report on the self-transition between ordered and disordered emulsions in divergent microfluidic channels, i.e., from monodisperse assemblies to heterogeneous polydisperse foamlike structures, and back again to ordered ones.

Fractional Orlicz-Sobolev spaces and their limits

We establish versions for fractional Orlicz-Sobolev seminorms, built upon Young functions, of the Bourgain-Brezis-Mironescu theorem on the limit as s ->1^-, and of the Maz'ya-Shaposhnikova theorem on the limit as s->0^-, dealing with classical fractional Sobolev spaces. As regards the limit as s ->1^-, Young functions with an asymptotic linear growth are also considered in connection with the space of functions of bounded variation. Concerning the limit as s->0^+, Young functions fulfilling the \Delta_2-condition are admissible.

Semiflexible polymers under large amplitude oscillatory shear flow

The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions under oscillatory shear flow are investigated by Brownian multi-particle collision dynamics. Two different scenarios will be considered: Filaments with both fixed ends [1] and wall-anchored chains [2].The results of the numerical studies will be presented and discussed. 1] A. Lamura, R. G. Winkler, 'Tethered semiflexible polymer under large amplitude oscillatory shear', Polymers 11, 737 (2019) [2] A. Lamura, R. G. Winkler, G.

Characterizing networks of propaganda on twitter: a case study

The daily exposure of social media users to propaganda and disinformation campaigns has reinvigorated the need to investigate the local and global patterns of diffusion of different (mis)information content on social media. Echo chambers and influencers are often deemed responsible of both the polarization of users in online social networks and the success of propaganda and disinformation campaigns. This article adopts a data-driven approach to investigate the structuration of communities and propaganda networks on Twitter in order to assess the correctness of these imputations.

Estimation algorithm for a hybrid pde-ode model inspired by immunocompetent cancer-on-chip experiment

The present work is motivated by the development of a mathematical model mimicking the mechanisms observed in lab-on-chip experiments, made to reproduce on microfluidic chips the in vivo reality. Here we consider the Cancer-on-Chip experiment where tumor cells are treated with chemotherapy drug and secrete chemical signals in the environment attracting multiple immune cell species. The in silico model here proposed goes towards the construction of a "digital twin" of the experimental immune cells in the chip environment to better understand the complex mechanisms of immunosurveillance.

Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL

Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response.

Concentrated phase emulsion with multicore morphology under shear: A numerical study

We numerically study the dynamic behavior under a symmetric shear flow of selected examples of concentrated phase emulsions with multicore morphology confined within a microfluidic channel. A variety of nonequilibrium steady states is reported. Under low shear rates, the emulsion is found to exhibit a solidlike behavior, in which cores display a periodic planetarylike motion with approximately equal angular velocity.

Anomaly detection in multichannel data using sparse representation in radwt frames

We introduce a new methodology for anomaly detection (AD) in multichannel fast oscillating signals based on nonparametric penalized regression. Assuming the signals share similar shapes and characteristics, the estimation procedures are based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. Under the standard hypothesis of Gaussian additive noise, we model the signals by the RADWT and the anomalies as additive in each signal.