H2020 Project ECOPOTENTIAL: making best use of remote sensing and in-situ observations to improve future ecosystem benefits

This poster has been presented at the first ILTER Open Science Meeting in Skukuza, Kruger National Park, South Africa, 9-13 October 2016 (https://na.eventscloud.com/ehome/156435), and describes the general purposes and organization of the H2020 project ECOPOTENTIAL (http://www.ecopotential-project.eu/)

Optimized modeling and design of a pcm-enhanced h2 storage

Thermal and mechanical energy storage is pivotal for the effective exploitation of renewable energy sources, thus fostering the transition to a sustainable economy. Hydrogen-based systems are among the most promising solutions for electrical energy storage. However, several technical and economic barriers (e.g., high costs, low energy and power density, advanced material requirements) still hinder the diffusion of such solutions.

Drug delivery from multi-layer micro-capsules: how can we estimate the release time?

In this paper, we consider a multi-layer diffusion model of drug release from a composite spherical microcapsule into an external surrounding medium. Based on this model, we present two approaches for estimating the release time, i.e. the time required for the drug-filled capsule to be depleted. Both approaches make use of temporal moments of the drug concentration at the centre of the capsule, which provide useful insight into the timescale of the process and can be computed exactly without explicit calculation of the full transient solution of the multi-layer diffusion model.

Fractional Orlicz-Sobolev spaces

The optimal Orlicz target space and the optimal rearrangement-invariant tar- get space are exhibited for embeddings of fractional-order Orlicz-Sobolev spaces W^{s,A}(R^n). Related Hardy type inequalities are proposed as well. Versions for frac- tional Orlicz-Sobolev seminorms of the Bourgain-Brezis-Mironescu theorem on the limit as s->1^- and of the Maz'ya-Shaposhnikova theorem on the limit as s ->0^+ are established. This is a joint work with Andrea Cianchi, Lubos Pick and Lenka Slavikova.

BootCMatchG: An adaptive Algebraic MultiGrid linear solver for GPUs

Sparse solvers are one of the building blocks of any technology for reliable and high-performance scientific and engineering computing. In this paper we present a software package which implements an efficient multigrid sparse solver running on Graphics Processing Units. The package is a branch of a wider initiative of software development for sparse Linear Algebra computations on emergent HPC architectures involving a large research group working in many application projects over the last ten years.

Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels

We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid.

Anomaly detection in multichannel data using sparse representation in radwt frames

We introduce a new methodology for anomaly detection (AD) in multichannel fast oscillating signals based on nonparametric penalized regression. Assuming the signals share similar shapes and characteristics, the estimation procedures are based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. Under the standard hypothesis of Gaussian additive noise, we model the signals by the RADWT and the anomalies as additive in each signal.

Frequency domain analysis of the gravitational wave energy loss in hyperbolic encounters

The energy radiated (without the 1.5PN tail contribution which requires a different treatment) by a binary system of compact objects moving in a hyperboliclike orbit is computed in the frequency domain through the second post-Newtonian level as an expansion in the large-eccentricity parameter up to next-to-next-to-leading order, completing the time domain corresponding information (fully known in closed form at the second post-Newtonian of accuracy).

Closed-loop supply chain design for the transition towards a circular economy: A systematic literature review of methods, applications and current gaps

Over the last decade, significant attention has been devoted to Closed-Loop Supply Chain (CLSC) design problems. As such, this review aims at assessing whether the current modelling approaches for CLSC problems can support the transition towards a Circular Economy at a supply chain level. The paper comprehensively assesses the extent to which existing modelling approaches evaluate the performance of supply chains across the complete spectrum of sustainability dimensions.