Information disorders during the COVID-19 infodemic: The case of Italian Facebook

The recent COVID-19 pandemic came alongside with an "infodemic", with online social media flooded by often unreliable information associating the medical emergency with popular subjects of disinformation. In Italy, one of the first European countries suffering a rise in new cases and dealing with a total lockdown, controversial topics such as migrant flows and the 5G technology were often associated online with the origin and diffusion of the virus.

Comparison of Different Reweighting Approaches for the Calculation of Conformational Variability of Macromolecules from Molecular Simulations

Conformational variability and heterogeneity are crucial determinants of the function of biological macromolecules. The possibility of accessing this information experimentally suffers from severe under-determination of the problem, since there are a few experimental observables to be accounted for by a (potentially) infinite number of available conformational states. Several computational methods have been proposed over the years in order to circumvent this theoretically insurmountable obstacle.

An Early Stage Researcher's Primer on Systems Medicine Terminology

Background: Systems Medicine is a novel approach to medicine, i.e. an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modelling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields.

A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone

Here some issues are studied, related to the numerical solution of Richards' equation in a one dimensional spatial domain by a technique based on the Transversal Method of Lines (TMoL). The core idea of TMoL approach is to semi-discretize the time derivative of Richards' equation: afterward a system of second order differential equations in the space variable is derived as an initial value problem. The computational framework of this method requires both Dirichlet and Neumann boundary conditions at the top of the column. The practical motivation for choosing such a condition is argued.

Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test

In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation.