Semiflexible polymers under oscillatory shear flow

The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions under oscillatory shear flow are investigated by Brownian multi-particle collision dynamics. Two different scenarios will be considered: Filaments with both fixed ends [1] and wall-anchored chains [2]. The results of the numerical studies will be presented and discussed. References [1] A. Lamura, R. G. Winkler Polymers 2019, 11, 737. DOI:10.3390/polym11040737 [2] A. Lamura, R. G. Winkler, G. Gompper pre-print 2021

Wall-anchored semiflexible polymer under large amplitude oscillatory shear flow

The properties of semiflexible polymers tethered by one end to an impenetrable wall and exposed to oscillatory shear flow are investigated by mesoscale simulations. A polymer, confined in two dimensions, is described by a linear bead-spring chain, and fluid interactions are incorporated by the Brownian multiparticle collision dynamics approach. At small strain, the polymers follow the applied flow field. However, at high strain, we find a strongly nonlinear response with major conformational changes.

Game of neutrophils: modeling the balance between apoptosis and necrosis

Background: Neutrophils are one of the key players in the human innate immune system (HIIS). In the event of an insult where the body is exposed to inflammation triggering moieties (ITMs), neutrophils are mobilized towards the site of insult and antagonize the inflammation. If the inflammation is cleared, neutrophils go into a programmed death called apoptosis.

Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices

Background: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. Results: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions.

Bounds in Total Variation Distance for Discrete-time Processes on the Sequence Space

Let P and (P) over tilde be the laws of two discrete-time stochastic processes defined on the sequence space S-N,where S is a finite set of points. In this paper we derive a bound on the total variation distance d(TV)(P, (P) over tilde) in terms of the cylindrical projections of P and (P) over tilde. We apply the result to Markov chains with finite state space and random walks on Z with not necessarily independent increments, and we consider several examples.

High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs

MicroRNAs play a fundamental role in retinal development and function. To characterise the miRNome of the human retina, we carried out deep sequencing analysis on sixteen individuals. We established the catalogue of retina-expressed miRNAs, determined their relative abundance and found that a small number of miRNAs accounts for almost 90% of the retina miRNome. We discovered more than 3000 miRNA variants (isomiRs), encompassing a wide range of sequence variations, which include seed modifications that are predicted to have an impact on miRNA action.

GeenaR: A Web Tool for Reproducible MALDI-TOF Analysis

Mass spectrometry is a widely applied technology with a strong impact in the proteomics field. MALDI-TOF is a combined technology in mass spectrometry with many applications in characterizing biological samples from different sources, such as the identification of cancer biomarkers, the detection of food frauds, the identification of doping substances in athletes' fluids, and so on. The massive quantity of data, in the form of mass spectra, are often biased and altered by different sources of noise.

Compact Ground-Based Interferometric Synthetic Aperture Radar Short-range structural monitoring

Recently, structural monitoring by radar remote sensing has become more necessary for both economic and security reasons. Infrastructure monitoring with no incorporated deformation sensors (e.g., old generation water dams for which regulations did not impose monitoring capabilities) is usually performed by regular in situ topographic surveys. However, these surveys cannot be performed very often, and alternative methods are desirable.