An Early Stage Researcher's Primer on Systems Medicine Terminology

Background: Systems Medicine is a novel approach to medicine, i.e. an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modelling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields.

Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice

Drug research, therapy development, and other areas of pharmacology and medicine can benefit from simula- tions and optimization of mathematical models that contain a mathematical description of interactions between systems elements at the cellular, tissue, organ, body, and population level. This approach is the foundation of systems medicine and precision medicine. Here, simulated experiments are performed with computers (in silico) first, and they are then replicated through lab experiments (in vivo or in vitro) or clinical studies.

Lattice Boltzmann simulations of stochastic thin film dewetting

We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equipped with a properly devised stochastic term. While it is known that thermal fluctuations yield shorter rupture times, we show that this is a general feature of hydrophilic substrates, irrespective of the contact angle $\theta$. The ratio between deterministic and stochastic rupture times, though, decreases with $\theta$.

Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions

Active fluids comprise a variety of systems composed of elements immersed in a fluid environment which can convert some form of energy into directed motion; as such they are intrinsically out-of-equilibrium in the absence of any external force. A fundamental problem in the physics of active matter concerns the understanding of how the characteristics of autonomous propulsion and agent-agent interactions determine the collective dynamics of the system.