Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices
Background: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. Results: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions.
Linear inviscid damping for shear flows near Couette in the 2D stably stratified regime
WeinvestigatethelinearstabilityofshearsneartheCouetteflowforaclassof2Dincompressible stably stratified fluids. Our main result consists of nearly optimal decay rates for perturbations of stationary states whose velocities are monotone shear flows (U (y), 0) and have an exponential density profile. In the case of the Couette flow U(y) = y, we recover the rates predicted by Hartman in 1975, by adopting an explicit point-wise approach in frequency space. As a by-product, this implies optimal decay rates as well as Lyapunov instability in L2 for the vorticity.
Confidentiality and availability issues in mobile unattended wireless sensor networks
In Mobile Unattended Wireless Sensor Networks (MUWSNs), nodes sense the environment and store the acquired data until the arrival of a trusted data sink. MUWSNs, other than being a reference model for an increasing number of military and civilian applications, also capture a few important characteristics of emerging computing paradigms like Participatory Sensing (PS). In this paper, we start by identifying the main features and issues of MUWSNs, revising the related work in the area and highlighting their shortcomings.
Chromatin and transcriptional response to loss of TBX1 in differentiating mouse P19Cl6 and embryonic stem cells
The T-box transcription factor TBX1 has critical roles in the cardiopharyngeal lineage and the gene is haploinsufficient in DiGeorge syndrome, a typical developmental anomaly of the pharyngeal apparatus. Despite almost two decades of research, if and how TBX1 function triggers chromatin remodeling is not known. Here, we explored genome-wide gene expression and chromatin remodeling in two independent cellular models of Tbx1 loss of function, mouse embryonic carcinoma cells P19Cl6, and mouse embryonic stem cells (mESCs).