Semiflexible polymers under large amplitude oscillatory shear flow

The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions under oscillatory shear flow are investigated by Brownian multi-particle collision dynamics. Two different scenarios will be considered: Filaments with both fixed ends [1] and wall-anchored chains [2].The results of the numerical studies will be presented and discussed. 1] A. Lamura, R. G. Winkler, 'Tethered semiflexible polymer under large amplitude oscillatory shear', Polymers 11, 737 (2019) [2] A. Lamura, R. G. Winkler, G.

Computational corroboration of the flow of rock glaciers against borehole measurements

In this study, we computationally corroborate the flow of rock glaciers against borehole measurements, within the context of a model previously developed (2020). The model is, here, tested against the simulation of the sliding motion of the Murtel-Corvatsch alpine glacier, which is characterized in detail in the literature with internal structure description and borehole deformations measurement.

Mesoscale modelling of near-contact interactions for complex flowing interfaces

We present a mesoscale kinetic model for multicomponent flows, augmented with a short range forcing term, aimed at describing the combined effect of surface tension and near-contact interactions operating at the fluid interface level. Such a mesoscale approach is shown to (i) accurately capture the complex dynamics of bouncing colliding droplets for different values of the main governing parameters, (ii) predict quantitatively the effective viscosity of dense emulsions in micro-channels and (iii) simulate the formation of the so-called soft flowing crystals in microfluidic focusers.

A Fractional-in-Time Prey-Predator Model with Hunting Cooperation: Qualitative Analysis, Stability and Numerical Approximations

A prey-predator system with logistic growth of prey and hunting cooperation of predators is studied. The introduction of fractional time derivatives and the related persistent memory strongly characterize the model behavior, as many dynamical systems in the applied sciences are well described by such fractional-order models. Mathematical analysis and numerical simulations are performed to highlight the characteristics of the proposed model.

Analysis of the Transient Behaviour in the Numerical Solution of Volterra Integral Equations

In this paper, the asymptotic behaviour of the numerical solution to the Volterra integral equations is studied. In particular, a technique based on an appropriate splitting of the kernel is introduced, which allows one to obtain vanishing asymptotic (transient) behaviour in the numerical solution, consistently with the properties of the analytical solution, without having to operate restrictions on the integration steplength

Insar Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore

Global mean sea level rise associated with global warming has a major impact on coastal areas and represents one of the significant natural hazards. The Asia-Pacific region, which has the highest concentration of human population in the world, represents one of the larger areas on Earth being threatened by the rise of sea level. Recent studies indicate a global sea level of 3.2 mm/yr as measured from 20 years of satellite altimetry. The combined effect of sea level rise and local land subsidence, can be overwhelming for coastal areas.