ADViSELipidomics: a workflow for analyzing lipidomics data

Summary: ADViSELipidomics is a novel Shiny app for preprocessing, analyzing and visualizing lipidomics data. It handles the outputs from LipidSearch and LIQUID for lipid identification and quantification and the data from the Metabolomics Workbench. ADViSELipidomics extracts information by parsing lipid species (using LIPID MAPS classification) and, together with information available on the samples, performs several exploratory and statistical analyses.

A minimal physical model captures the shapes of crawling cells

Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear.

Motility-induced phase separation and coarsening in active matter

Active systems, or active matter, are self-driven systems that live, or function, far from equilibrium - a paradigmatic example that we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The non-equilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena.

A heuristic algorithm solving the mutual-exclusivity-sorting problem

Motivation: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations--copy number alterations or mutations--observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend.

Formation of calcium phosphate nanoparticles in the presence of carboxylate molecules: a time-resolved in situ synchrotron SAXS and WAXS study

In this work we have studied in situ the formation and growth of calcium phosphate (CaP) nanoparticles (NPs) in the presence of three calcium-binding carboxylate molecules having different affinities for Ca2+ ions: citrate (Cit), hydroxycitrate (CitOH), and glutarate (Glr). The formation of CaP NPs at several reaction temperatures ranging from 25 degrees C to 80 degrees C was monitored in situ through simultaneous Small and Wide X-ray Scattering (SAXS/WAXS) using synchrotron light. SAXS was used to investigate the first stages of NP formation where a crystalline order is not yet formed.

Radiation-reaction and angular momentum loss at the second Post-Minkowskian order

We compute the variation of the Fokker-Wheeler-Feynman total linear and angular momentum of a gravitationally interacting binary system under the second post-Minkowskian retarded dynamics. The resulting OðG2Þ equations-of-motion-based, total change in the system's angular momentum is found to agree with existing computations that assumed balance with angular momentum fluxes in the radiation zone.

Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics

Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered.

Machine learning assisted droplet trajectories extraction in dense emulsions

This work analyzes trajectories obtained by YOLO and DeepSORT algorithms of dense emulsion systems simulated via lattice Boltzmann methods. The results indicate that the individual droplet's moving direction is influenced more by the droplets immediately behind it than the droplets in front of it. The analysis also provide hints on constraints of a dynamical model of droplets for the dense emulsion in narrow channels.

Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics

The radical polymerization process of acrylate compounds is, nowadays, numerically investigated using classical force fields and reactive molecular dynamics, with the aim to probe the gel-point transition as a function of the initial radical concentration. In the present paper, the gel-point transition of the 1,6-hexanediol dimethacrylate (HDDMA) is investigated by a coarser force field which grants a reduction in the computational costs, thereby allowing the simulation of larger system sizes and smaller radical concentrations.