Acceleration statistics of inertial particles from high resolution DNS turbulence

We present results from recent direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, with grid resolution up to 5123 and R? ? 185. By following the trajectories of millions of particles with different Stokes numbers, St ? [0.16 : 3.5], we are able to characterize in full detail the statistics of particle acceleration. We focus on the probability density function of the normalised acceleration a/arms and on the behaviour of their rootmean-squared acceleration arms as a function of both St and R?.

Tropospheric Ozone Monitoring with IASI/MetOP Using a Self - Adapting Regularizati on Method

Tropospheric ozone is a key species for tropospheric chemistry and air quality. Its monitoring is essential to quantify sources, transport, chemical transformation and sinks of atmospheric pollution. Accurate data are required for understanding and predicting chemical weather. Space-borne observations are very promising for these concerns, especially those from IASI/MetOp.

Information content of long-range NMR data for the characterization of conformational heterogeneity

Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data.

A Numerical Comparison Between Degenerate Parabolic and Quasilinear Hyperbolic Models of Cell Movements Under Chemotaxis

We consider two models which were both designed to describe the movement of eukaryotic cells responding to chemical signals. Besides a common standard parabolic equation for the diffusion of a chemoattractant, like chemokines or growth factors, the two models differ for the equations describing the movement of cells. The first model is based on a quasilinear hyperbolic system with damping, the other one on a degenerate parabolic equation. The two models have the same stationary solutions, which may contain some regions with vacuum.

A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line

In this paper we propose a discrete in continuous mathematical model for the morphogenesis of the posterior lateral line system in zebrafish. Our model follows closely the results obtained in recent biological experiments. We rely on a hybrid description: discrete for the cellular level and continuous for the molecular level. We prove the existence of steady solutions consistent with the formation of particular biological structure, the neuromasts.

Fundamental diagrams in traffic flow: the case of heterogeneous kinetic models

Experimental studies on vehicular traffic provide data on quantities like density, flux, and mean speed of the vehicles. However, the diagrams relating these variables (the fundamental and \emph{speed} diagrams) show some peculiarities not yet fully reproduced nor explained by mathematical models. In this paper, resting on the methods of kinetic theory, we introduce a new traffic model which takes into account the heterogeneous nature of the flow of vehicles along a road.

Un approccio multiscala alla dinamica delle folle mediante misure che evolvono nel tempo

This paper deals with models of living complex systems, chiefly human crowds, by methods of conservation laws and measure theory. We introduce a modeling framework which enables one to address both discrete and continuous dynamical systems in a unified manner using common phenomenological ideas and mathematical tools as well as to couple these two descriptions in a multiscale perspective. Furthermore, we present a basic theory of well-posedness and numerical approximation of initial-value problems and we discuss its implications on mathematical modeling.