Un approccio multiscala alla dinamica delle folle mediante misure che evolvono nel tempo

This paper deals with models of living complex systems, chiefly human crowds, by methods of conservation laws and measure theory. We introduce a modeling framework which enables one to address both discrete and continuous dynamical systems in a unified manner using common phenomenological ideas and mathematical tools as well as to couple these two descriptions in a multiscale perspective. Furthermore, we present a basic theory of well-posedness and numerical approximation of initial-value problems and we discuss its implications on mathematical modeling.

Pointwise and uniform approximation of the Hilbert transform

The Hilbert transform of a function g, H(g) is an important tool in many mathematical fields. Expecially its numerical evaluation is often useful in some procedures for searcing solutions of the singular integral equations. In this context an approximation of (HV^alpha,beta,f;t), |t|1, where f is a continuous function in [-1,1] and v^alpha,beta, alpha,beta>-1 is a Jacobi weight, is required. In the last decade more then one paper appeared on this subject and among others we recall [1,2,3,4,5,14,15,20]. The procedure used in these papers can be described as follows.

Multidimensional extensions of the Bernoulli and Appell polynomials

Multidimensional extensions of the Bernoulli and Appell polynomials are defined generalizing the corresponding generating functions, and using the Hermite-Kampe de Feriet (or Gould-Hopper) polynomials. Furthermore the differential equations satisfied by the corresponding 2D polynomials are derived exploiting the factorization method, introduced in [15].

Multiphase modelling of tumour growth and extracellular matrix interaction: Mathematical tools and applications

Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM.

Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine

Abstract The hydrodynamic characterization of control appendages for ship hulls is of paramount importance for the assessment of maneuverability characteristics. However, the accurate numerical simulation of turbulent flow around a fully appended maneuvering vessel is a challenging task, because of the geometrical complexity of the appendages and of the complications connected to their movement during the computation. In addition, the accurate description of the flow within the boundary layer is important in order to estimate correctly the forces acting on each portion of the hull.