Some interpolating operators of de la Vallée Poussin type

We consider discrete versions of the de la Vallée-Poussin algebraic operator. We give a simple sufficient condition in order that such discrete operators interpolate, and in particular we study the case of the Bernstein-Szego weights. Furthermore we obtain good error estimates in the cases of the sup-norm and L 1-norm, which are critical cases for the classical Lagrange interpolation.

A numerical method for a Volterra-type integral equation with logarithm kernel

We consider a class of integral equations of Volterra type with constant coefficients containing a logarithmic difference kernel. This class coincides for a=0 with the Symm's euqtion. We can transform the general integral equation into an equivalent singular equation of Cauchy type which allows us to give the explicit formula for the solution. The numerical method proposed in this paper consists in substituting this in the experrsion of the solution g.

Mechanics and chemotaxis in the morphogenesis of vascular networks

The formation of vascular networks in vitro develops along two rather distinct stages: during the early migration-dominated stage the main features of the pattern emerge, later the mechanical interaction of the cells with the substratum stretches the network. Mathematical models in the relevant literature have been focusing just on either of the aspects of this complex system. In this paper, a unified view of the morphogenetic process is provided in terms of physical mechanisms and mathematical modeling.

A numerical method for a class of Volterra integral equations with logarithmic perturbation kernel

We consider a class of integral equations of Volterra type with constant coefficients containing a logarithmic difference kernel. This class coincides for a=0 with the Symm's equation. We can transform the general integral equation into an equivalent singular equation of Cauchy type which allows us to give an explicit formula for the solution g. The numerical method proposed in this paper consists in substituting the Lagrange polynomial interpolating the known function f in the expression of the solution g.

Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine

Abstract The hydrodynamic characterization of control appendages for ship hulls is of paramount importance for the assessment of maneuverability characteristics. However, the accurate numerical simulation of turbulent flow around a fully appended maneuvering vessel is a challenging task, because of the geometrical complexity of the appendages and of the complications connected to their movement during the computation. In addition, the accurate description of the flow within the boundary layer is important in order to estimate correctly the forces acting on each portion of the hull.