A numerical method for a Volterra-type integral equation with logarithm kernel

We consider a class of integral equations of Volterra type with constant coefficients containing a logarithmic difference kernel. This class coincides for a=0 with the Symm's euqtion. We can transform the general integral equation into an equivalent singular equation of Cauchy type which allows us to give the explicit formula for the solution. The numerical method proposed in this paper consists in substituting this in the experrsion of the solution g.

Modeling rationality to control self-organization of crowds: an environmental approach

In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness of the individuals.

Mathematical model of tumour cord growth along the source of nutrient

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical method is proposed. The level set method is used to track an interface between the tissues.

Mathematical modeling of vehicular traffic: A discrete kinetic theory approach

Following some general ideas on the discrete kinetic and stochastic game theory proposed by one of the authors in a previous work, this paper develops a discrete velocity mathematical model for vehicular traffic along a one-way road. The kinetic scale is chosen because, unlike the macroscopic one, it allows to capture the probabilistic essence of the interactions among the vehicles, and offers at the same time, unlike the microscopic one, the opportunity of a pro. table analytical investigation of the relevant global features of the system.

Multiphase modeling and qualitative analysis of the growth of tumor cords

In this paper a macroscopic model of tumor cord growth is developed, relying on the mathematical theory of deformable porous media. Tumor is modeled as a saturated mixture of proliferating cells, extracellular fluid and extracellular matrix, that occupies a spatial region close to a blood vessel whence cells get the nutrient needed for their vital functions. Growth of tumor cells takes place within a healthy host tissue, which is in turn modeled as a saturated mixture of non-proliferating cells.