Reliable and perfectly secret communication over the generalized Ozarow-Wyner's wire-tap channel

In a typical secure communication system, messages undergo two different encodings: an error-correcting code is applied at the physical layer to ensure correct reception by the addressee (integrity), while at an upper protocol layer cryptography is leveraged to enforce secrecy with respect to eavesdroppers (confidentiality).

Security in wireless ad-hoc networks - A survey

Pervasive mobile and low-end wireless technologies, such as radio-frequency identification (RFID), wireless sensor networks and the impending vehicular ad-hoc networks (VANETs), make the wireless scenario exciting and in full transformation. For all the above (and similar) technologies to fully unleash their potential in the industry and society, there are two pillars that cannot be overlooked: security and privacy. Both properties are especially relevant if we focus on ad-hoc wireless networks, where devices are required to cooperate - e.g.

3-D Ground-Based Imaging Radar Based on C-Band Cross-MIMO Array and Tensor Compressive Sensing

We designed a ground-based radar system with a C-band 2-D cross multiple input multiple output (MIMO) array for 3-D imaging and displacement estimation purposes. For this system, we developed a far-field pseudo-polar image format algorithm using pseudo-polar spherical coordinate. The use of a tensor compressive sensing technique allows to focus under-sampled raw data and to optimize the data acquisition time and memory usage.

Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors

This work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station.

Passive Bistatic Ground-Based Synthetic Aperture Radar: Concept, System, and Experiment Results

A passive bistatic ground-based synthetic aperture radar (PB-GB-SAR) system without a dedicated transmitter has been developed by using commercial-off-the-shelf (COTS) hardware for local-area high-resolution imaging and displacement measurement purposes. Different from the frequency-modulated or frequency-stepped continuous wave signal commonly used by GB-SAR, the continuous digital TV signal broadcast by a geostationary satellite has been adopted by PB-GB-SAR.

GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares

We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy.

Confidentiality and availability issues in mobile unattended wireless sensor networks

In Mobile Unattended Wireless Sensor Networks (MUWSNs), nodes sense the environment and store the acquired data until the arrival of a trusted data sink. MUWSNs, other than being a reference model for an increasing number of military and civilian applications, also capture a few important characteristics of emerging computing paradigms like Participatory Sensing (PS). In this paper, we start by identifying the main features and issues of MUWSNs, revising the related work in the area and highlighting their shortcomings.

ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex

ZBTB2 is a protein belonging to the BTB/POZ zinc-finger family whose members typically contain a BTB/POZ domain at the N-terminus and several zinc-finger domains at the C-terminus. Studies have been carried out to disclose the role of ZBTB2 in cell proliferation, in human cancers and in regulating DNA methylation. Moreover, ZBTB2 has been also described as an ARF, p53 and p21 gene repressor as well as an activator of genes modulating pluripotency. In this scenario, ZBTB2 seems to play many functions likely associated with other proteins.

Mapping Precipitable Water Vapor Time Series From Sentinel-1 Interferometric SAR

In this article, a methodology to retrieve the precipitable water vapor (PWV) from a differential interferometric time series is presented. We used external data provided by atmospheric weather models (e.g., ERA-Interim reanalysis) to constrain the initial state and by Global Navigation Satellite System (GNSS) to phase ambiguities elimination introduced by phase unwrapping algorithm. An iterative least-square is then used to solve the optimization problem.