Models of polymer solutions in electrified jets and solution blowing

Fluid flows hosting electrical phenomena are the subject of a fascinating and highly interdisciplinary scientific field. In recent years, the extraordinary success of electrospinning and solution-blowing technologies for the generation of polymer nanofibers has motivated vibrant research aiming at rationalizing the behavior of viscoelastic jets under applied electric fields or other stretching fields including gas streams.

Network and Systems Medicine: Position Paper of the European Collaboration on Science and Technology Action on Open Multiscale Systems Medicine

Introduction: Network and systems medicine has rapidly evolved over the past decade, thanks to computational and integrative tools, which stem in part from systems biology. However, major challenges and hurdles are still present regarding validation and translation into clinical application and decision making for precision medicine.

A Langevin dynamics approach for multi-layer mass transfer problems

We use Langevin dynamics simulations to study the mass diffusion problem across two adjacent porous layers of different transport properties. At the interface between the layers, we impose the Kedem-Katchalsky (KK) interfacial boundary condition that is well suited in a general situation. A detailed algorithm for the implementation of the KK interfacial condition in the Langevin dynamics framework is presented. As a case study, we consider a two-layer diffusion model of a drug-eluting stent.

Towards a comprehensive model for the impact of traffic patterns on air pollution

The impact of vehicular traffic on society is huge and multifaceted, including economic, social, health and environmental aspects. The problems is complex and hard to model since it requires to consider traffic patterns, air pollutant emissions, and the chemical reactions and dynamics of pollutants in the low atmosphere. This paper aims at exploring a comprehensive simulation tool ranging from vehicular traffic all the way to environmental impact.

Multiparticle collision dynamics for fluid interfaces with near-contact interactions

We present an extension of the multiparticle collision dynamics method for flows with complex interfaces, including supramolecular near-contact interactions mimicking the effect of surfactants. The new method is demonstrated for the case of (i) short range repulsion of droplets in close contact, (ii) arrested phase separation, and (iii) different pattern formation during spinodal decomposition of binary mixtures.

A candidate multi-epitope vaccine against SARS-CoV-2

In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2.