Signed radon measure-valued solutions of flux saturated scalar conservation laws

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares

We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy.

Mapping Precipitable Water Vapor Time Series From Sentinel-1 Interferometric SAR

In this article, a methodology to retrieve the precipitable water vapor (PWV) from a differential interferometric time series is presented. We used external data provided by atmospheric weather models (e.g., ERA-Interim reanalysis) to constrain the initial state and by Global Navigation Satellite System (GNSS) to phase ambiguities elimination introduced by phase unwrapping algorithm. An iterative least-square is then used to solve the optimization problem.

InSAR Meteorology: High-Resolution Geodetic Data Can Increase Atmospheric Predictability

The present study assesses the added value of high-resolution maps of precipitable water vapor, computed from synthetic aperture radar interferograms , in short-range atmospheric predictability. A large set of images, in different weather conditions, produced by Sentinel-1A in a very well monitored region near the Appalachian Mountains, are assimilated by the Weather Research and Forecast (WRF) model.

Compact Ground-Based Interferometric Synthetic Aperture Radar Short-range structural monitoring

Recently, structural monitoring by radar remote sensing has become more necessary for both economic and security reasons. Infrastructure monitoring with no incorporated deformation sensors (e.g., old generation water dams for which regulations did not impose monitoring capabilities) is usually performed by regular in situ topographic surveys. However, these surveys cannot be performed very often, and alternative methods are desirable.

Passive Bistatic Ground-Based Synthetic Aperture Radar: Concept, System, and Experiment Results

A passive bistatic ground-based synthetic aperture radar (PB-GB-SAR) system without a dedicated transmitter has been developed by using commercial-off-the-shelf (COTS) hardware for local-area high-resolution imaging and displacement measurement purposes. Different from the frequency-modulated or frequency-stepped continuous wave signal commonly used by GB-SAR, the continuous digital TV signal broadcast by a geostationary satellite has been adopted by PB-GB-SAR.