Security in wireless ad-hoc networks - A survey

Pervasive mobile and low-end wireless technologies, such as radio-frequency identification (RFID), wireless sensor networks and the impending vehicular ad-hoc networks (VANETs), make the wireless scenario exciting and in full transformation. For all the above (and similar) technologies to fully unleash their potential in the industry and society, there are two pillars that cannot be overlooked: security and privacy. Both properties are especially relevant if we focus on ad-hoc wireless networks, where devices are required to cooperate - e.g.

High performance implementations of the 2D Ising model on GPUs

We present and make available novel implementations of the two-dimensional Ising model that is used as a benchmark to show the computational capabilities of modern Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach.

Provable Storage Medium for Data Storage Outsourcing

In remote storage services, delays in the time to retrieve data can cause economic losses to the data owners. In this paper, we address the problem of properly establishing specific clauses in the service level agreement (SLA), intended to guarantee a short and predictable retrieval time. Based on the rationale that the retrieval time mainly depends on the storage media used at the server side, we introduce the concept of Provable Storage Medium (PSM), to denote the ability of a user to efficiently verify that the provider is complying to this aspect of the SLA.

Multi-Word Structural Topic Modelling of ToR Drug Marketplaces

Topic Modelling (TM) is a widely adopted generative model used to infer the thematic organization of text corpora. When document-level covariate information is available, so-called Structural Topic Modelling (STM) is the state-of-the-art approach to embed this information in the topic mining algorithm. Usually, TM algorithms rely on unigrams as the basic text generation unit, whereas the quality and intelligibility of the identified topics would significantly benefit from the detection and usage of topical phrasemes.

An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model

The Global Navigation Satellite System (GNSS) meteorology contribution to the comprehension of the Earth's atmosphere's global and regional variations is essential. In GNSS processing, the zenith wet delay is obtained using the difference between the zenith total delay and the zenith hydrostatic delay. The zenith wet delay can also be converted into precipitable water vapor by knowing the atmospheric weighted mean temperature profiles.

Data Confidentiality and Availability via Secret Sharing and Node Mobility in UWSN

In Mobile Unattended Wireless Sensor Networks (MUWSNs), nodes sense the environment and store the acquired data until the arrival of a trusted data sink. In this paper, we address the fundamental issue of quantifying to which extent secret sharing schemes, combined with nodes mobility, can help in assuring data availability and confidentiality. We provide accurate analytical results binding the fraction of the network accessed by the sink and the adversary to the amount of information they can successfully recover. Extensive simulations support our findings.

Signed radon measure-valued solutions of flux saturated scalar conservation laws

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

Insar Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore

Global mean sea level rise associated with global warming has a major impact on coastal areas and represents one of the significant natural hazards. The Asia-Pacific region, which has the highest concentration of human population in the world, represents one of the larger areas on Earth being threatened by the rise of sea level. Recent studies indicate a global sea level of 3.2 mm/yr as measured from 20 years of satellite altimetry. The combined effect of sea level rise and local land subsidence, can be overwhelming for coastal areas.

GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares

We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy.

Cryptanalysis on GPUs with the Cube Attack: Design, Optimization and Performances Gains

The cube attack is a flexible cryptanalysis technique, with a simple and fascinating theoretical implant. It combines offline exhaustive searches over selected tweakable public/IV bits (the sides of the "cube"), with an online key-recovery phase. Although virtually applicable to any cipher, and generally praised by the research community, the real potential of the attack is still in question, and no implementation so far succeeded in breaking a real-world strong cipher. In this paper, we present, validate and analyze the first thorough implementation of the cube attack on a GPU cluster.