Closed-loop supply chain design for the transition towards a circular economy: A systematic literature review of methods, applications and current gaps

Over the last decade, significant attention has been devoted to Closed-Loop Supply Chain (CLSC) design problems. As such, this review aims at assessing whether the current modelling approaches for CLSC problems can support the transition towards a Circular Economy at a supply chain level. The paper comprehensively assesses the extent to which existing modelling approaches evaluate the performance of supply chains across the complete spectrum of sustainability dimensions.

Fractional Orlicz-Sobolev spaces

The optimal Orlicz target space and the optimal rearrangement-invariant tar- get space are exhibited for embeddings of fractional-order Orlicz-Sobolev spaces W^{s,A}(R^n). Related Hardy type inequalities are proposed as well. Versions for frac- tional Orlicz-Sobolev seminorms of the Bourgain-Brezis-Mironescu theorem on the limit as s->1^- and of the Maz'ya-Shaposhnikova theorem on the limit as s ->0^+ are established. This is a joint work with Andrea Cianchi, Lubos Pick and Lenka Slavikova.

TLS and GB-RAR Measurements of Vibration Frequencies and Oscillation Amplitudes of Tall Structures: An Application to Wind Towers

This article presents a methodology for the monitoring of tall structures based on the joint use of a terrestrial laser scanner (TLS), configured in line scanner mode, and a ground-based real aperture radar (GB-RAR) interferometer. The methodology provides both natural frequencies and oscillation amplitudes of tall structures. Acquisitions of the surface of the tall structure are performed by the TLS with a high sampling rate: each line scan provides an instantaneous longitudinal section.

Tracking droplets in soft granular flows with deep learning techniques

The state-of-the-art deep learning-based object recognition YOLO algorithm and object tracking DeepSORT algorithm are combined to analyze digital images from fluid dynamic simulations of multi-core emulsions and soft flowing crystals and to track moving droplets within these complex flows. The YOLO network was trained to recognize the droplets with synthetically prepared data, thereby bypassing the labor-intensive data acquisition process.

Higher-order tail contributions to the energy and angular momentum fluxes in a two-body scattering process

The need for more and more accurate gravitational-wave templates requires taking into account all possible contributions to the emission of gravitational radiation from a binary system. Therefore, working within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the source multipole moments, the dominant instantaneous effects should be supplemented by hereditary contributions arising from nonlinear interactions between the multipoles.

Gravitational scattering at the seventh order in G: Nonlocal contribution at the sixth post-Newtonian accuracy

A recently introduced approach to the classical gravitational dynamics of binary systems involves intricate integrals (linked to a combination of nonlocal-in-time interactions with iterated 1r-potential scattering) which have so far resisted attempts at their analytical evaluation.

Macroscopic and multi-scale models for multi-class vehicular dynamics with uneven space occupancy: A case study

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density.