Compact Ground-Based Interferometric Synthetic Aperture Radar Short-range structural monitoring
Recently, structural monitoring by radar remote sensing has become more necessary for both economic and security reasons. Infrastructure monitoring with no incorporated deformation sensors (e.g., old generation water dams for which regulations did not impose monitoring capabilities) is usually performed by regular in situ topographic surveys. However, these surveys cannot be performed very often, and alternative methods are desirable.
Security in wireless ad-hoc networks - A survey
Pervasive mobile and low-end wireless technologies, such as radio-frequency identification (RFID), wireless sensor networks and the impending vehicular ad-hoc networks (VANETs), make the wireless scenario exciting and in full transformation. For all the above (and similar) technologies to fully unleash their potential in the industry and society, there are two pillars that cannot be overlooked: security and privacy. Both properties are especially relevant if we focus on ad-hoc wireless networks, where devices are required to cooperate - e.g.
Noise Removal from Remote Sensed Images by NonLocal Means with OpenCL Algorithm
We introduce a multi-platform portable implementation of the NonLocal Means methodology aimed at noise removal from remotely sensed images. It is particularly suited for hyperspectral sensors for which real-time applications are not possible with only CPU based algorithms. In the last decades computational devices have usually been a compound of cross-vendor sets of specifications (heterogeneous system architecture) that bring together integrated central processing (CPUs) and graphics processor (GPUs) units.
Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test
In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation.
An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model
The Global Navigation Satellite System (GNSS) meteorology contribution to the comprehension of the Earth's atmosphere's global and regional variations is essential. In GNSS processing, the zenith wet delay is obtained using the difference between the zenith total delay and the zenith hydrostatic delay. The zenith wet delay can also be converted into precipitable water vapor by knowing the atmospheric weighted mean temperature profiles.
On the limit as $s\to 1^-$ of possibly non-separable fractional Orlicz-Sobolev spaces
Extended versions of the Bourgain-Brezis-Mironescu theorems on the limit as s->1^- of the Gagliardo-Slobodeckij fractional seminorm are established in the Orlicz space setting. Our results hold for fractional Orlicz-Sobolev spaces built upon general Young functions, and complement those of [13], where Young functions satisfying the $\Delta_2$ and the $\nabla_2$ conditions are dealt with. The case of Young functions with an asymptotic linear growth is also considered in connection with the space of functions of bounded variation.