Sixth post-Newtonian local-in-time dynamics of binary systems

Using a recently introduced method [D. Bini, T. Damour, and A. Geralico, Phys. Rev. Lett. 123, 231104 (2019)], which splits the conservative dynamics of gravitationally interacting binary systems into a nonlocal-in-time part and a local-in-time one, we compute the local part of the dynamics at the sixth post-Newtonian (6PN) accuracy. Our strategy combines several theoretical formalisms: post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, effective-field-theory, gravitational self-force, effective one-body, and Delaunay averaging.

Automatic coarsening in Algebraic Multigrid utilizing quality measures for matching-based aggregations Pasqua D'Ambra, Fabio Durastante, Salvatore Filippone, Ludmil Zikatanov

In this paper, we discuss the convergence of an Algebraic MultiGrid (AMG) method for general symmetric positive-definite matrices. The method relies on an aggregation algorithm, named coarsening based on compatible weighted matching, which exploits the interplay between the principle of compatible relaxation and the maximum product matching in undirected weighted graphs.

StructuRly: A novel shiny app to produce comprehensive, detailed and interactive plots for population genetic analysis

Population genetics focuses on the analysis of genetic differences within and between-group of individuals and the inference of the populations' structure. These analyses are usually carried out using Bayesian clustering or maximum likelihood estimation algorithms that assign individuals to a given population depending on specific genetic patterns. Although several tools were developed to perform population genetics analysis, their standard graphical outputs may not be sufficiently informative for users lacking interactivity and complete information.

L-splines as diffusive limits of dissipative kinetic models

Dissipative kinetic models inspired by neutron transport are studied in a (1+1)-dimensional context: first, in the two-stream approximation, then in the general case of continuous velocities. Both are known to relax, in the diffusive scaling, toward a damped heat equation. Accordingly, it is shown that "uniformly accurate" L-splines discretizations of this parabolic asymptotic equation emerge from well-balanced schemes involving scattering S-matrices for the kinetic models.

ALMOST SURE CENTRAL LIMIT THEOREMS IN STOCHASTIC GEOMETRY

We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals arising in stochastic geometry. As a consequence, we provide almost sure central limit theorems for (i) the total edge length of the k-nearest neighbors random graph. (ii) the clique count in random geometric graphs. and (iii) the volume of the set approximation via the Poisson-Voronoi tessellation.

Scattering of tidally interacting bodies in post-Minkowskian gravity

The post-Minkowskian approach to gravitationally interacting binary systems (i.e., perturbation theory in G, without assuming small velocities) is extended to the computation of the dynamical effects induced by the tidal deformations of two extended bodies, such as neutron stars. Our derivation applies general properties of perturbed actions to the effective field theory description of tidally interacting bodies. We compute several tidal invariants (notably the integrated quadrupolar and octupolar actions) at the fast post-Minkowskian order.

Towards a comprehensive model for the impact of traffic patterns on air pollution

The impact of vehicular traffic on society is huge and multifaceted, including economic, social, health and environmental aspects. The problems is complex and hard to model since it requires to consider traffic patterns, air pollutant emissions, and the chemical reactions and dynamics of pollutants in the low atmosphere. This paper aims at exploring a comprehensive simulation tool ranging from vehicular traffic all the way to environmental impact.