Provable Storage Medium for Data Storage Outsourcing

In remote storage services, delays in the time to retrieve data can cause economic losses to the data owners. In this paper, we address the problem of properly establishing specific clauses in the service level agreement (SLA), intended to guarantee a short and predictable retrieval time. Based on the rationale that the retrieval time mainly depends on the storage media used at the server side, we introduce the concept of Provable Storage Medium (PSM), to denote the ability of a user to efficiently verify that the provider is complying to this aspect of the SLA.

Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia

Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia.

Epidemic data survivability in Unattended Wireless Sensor Networks: New models and results

Unattended Wireless Sensor Networks (UWSNs), characterized by the intermittent presence of the sink, are exposed to attacks aiming at tampering with the sensors and the data they store. In order to prevent an adversary from erasing any sensed data before the sink collects them, it is common practice to rely on data replication. However, identifying the most suitable replication rate is challenging: data should be redundant enough to avoid data loss, but not so much as to pose an excessive burden on the limited resources of the sensors.

Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data

This study describes a semi-empirical model developed to estimate volumetric soil moisture (<mml:semantics>theta v</mml:semantics>) in bare soils during the dry season (March-May) using C-band (5.42 GHz) synthetic aperture radar (SAR) imagery acquired from the Sentinel-1 European satellite platform at a 20 m spatial resolution. The semi-empirical model was developed using backscatter coefficient (<mml:semantics>sigma degrees dB</mml:semantics>) and in situ soil moisture collected from Siruguppa taluk (sub-district) in the Karnataka state of India.

Signed radon measure-valued solutions of flux saturated scalar conservation laws

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines

Recent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical MRI data, with a focus on connectivity and graph theoretical analyses.

Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test

In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation.

High performance implementations of the 2D Ising model on GPUs

We present and make available novel implementations of the two-dimensional Ising model that is used as a benchmark to show the computational capabilities of modern Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach.

Security in wireless ad-hoc networks - A survey

Pervasive mobile and low-end wireless technologies, such as radio-frequency identification (RFID), wireless sensor networks and the impending vehicular ad-hoc networks (VANETs), make the wireless scenario exciting and in full transformation. For all the above (and similar) technologies to fully unleash their potential in the industry and society, there are two pillars that cannot be overlooked: security and privacy. Both properties are especially relevant if we focus on ad-hoc wireless networks, where devices are required to cooperate - e.g.