Near-critical reflection of internal waves

Internal waves describe the (linear) response of an incompressible sta- bly stratified fluid to small perturbations. The inclination of their group velocity with respect to the vertical is completely determined by their frequency. Therefore the reflection on a sloping boundary cannot follow Descartes' laws, and it is expected to be singular if the slope has the same inclination as the group velocity.

Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense

In this paper, a reaction-diffusion prey-predator system including the fear effect of predator on prey population and group defense has been considered. The conditions for the onset of cross-diffusion-driven instability are obtained by linear stability analysis. The technique of multiple time scales is employed to deduce the amplitude equation near Turing bifurcation threshold by choosing the cross-diffusion coefficient as a bifurcation parameter.

Nonresonant bilinear forms for partially dissipative hyperbolic systems violating the Shizuta-Kawashima condition

We consider a simple example of a partially dissipative hyperbolic system violating the Shizuta-Kawashima condition, ie such that some eigendirections do not exhibit dissipation at all. In the space-time resonances framework introduced by Germain, Masmoudi and Shatah, we prove that, when the source term has a Nonresonant Bilinear Form, as proposed by Pusateri and Shatah CPAM 2013, the formation of singularities is prevented, despite the lack of dissipation. This allows us to show that smooth solutions to this preliminary case-study model exist globally in time.

A candidate multi-epitope vaccine against SARS-CoV-2

In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2.

Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions

We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model.

On the exit-times approach for epsilon-entropy and turbulent signals

We review a recently proposed approach to the computation of the E-entropy of a given signal based on the exit-time statistics, i.e., one codes the signal by looking at the instants when the fluctuations are larger than a given threshold, epsilon. Moreover, we show how the exit-times statistics, when applied to experimental turbulent data, is able to highlight the intermediate-dissipative-range of turbulent fluctuations. (C) 2000 Elsevier Science B.V. All rights reserved.

Diffusion-Driven X-Ray Two-Dimensional Patterns Denoising

The use of a mathematical model is proposed in order to denoise X-ray two-dimensional patterns. The method relies on a generalized diffusion equation whose diffusion constant depends on the image gradients. The numerical solution of the diffusion equation provides an efficient reduction of pattern noise as witnessed by the computed peak of signal-to-noise ratio. The use of experimental data with different inherent levels of noise allows us to show the success of the method even in the case, experimentally relevant, when patterns are blurred by Poissonian noise.

Le ambre figurate in Italia meridionale tra VIII e V secolo a.C. Note sui centri di produzione e sulle botteghe

The study takes up some issues relating to the location of the workshops that produced the valuable figured ambers that marked the aristocratic burials of southern Italy from the eighth to fifth century BC. The contribution of findings and recent studies enabled us to assign some groups of artifacts to the activity of different workshops and even to identify outstanding artistic personalities, highlighting the undeniable stylistic connections between them.

On QZ Steps with Perfect Shifts and Computing the Index of a Differential Algebraic Equation

In this paper we revisit the problem of performing a QZ step with a so-called "perfect shift", which is an "exact" eigenvalue of a given regular pencil lambda B-A in unreduced Hessenberg-Triangular form. In exact arithmetic, the QZ step moves that eigenvalue to the bottom of the pencil, while the rest of the pencil is maintained in Hessenberg-Triangular form, which then yields a deflation of the given eigenvalue. But in finite-precision the QZ step gets "blurred" and precludes the deflation of the given eigenvalue.