Hypoxia-regulated miRNAs in human mesenchymal stem cells: Exploring the regulatory effects in ischemic disorders

Human mesenchymal/stromal stem cells (hMSC) are the most promising cell source for adult cell therapies in regenerative medicine. Many clinical trials have reported the use of autologous transplantation of hMSCs in several disorders, but with limited results. To exert their potential, hMSCs could exhibit efficient homing and migration toward lesion sites among other effects, but the underlying process is not clear enough. To further increase the knowledge, we studied the co-regulation between hypoxia-regulated genes and miRNAs.

Dynamic symmetry-breaking in mutually annihilating fluids with selective interfaces

The selective entrapment of mutually annihilating species within a phase-changing carrier fluid is explored by both analytical and numerical means. The model takes full account of the dynamic heterogeneity which arises as a result of the coupling between hydrodynamic transport, dynamic phase-transitions and chemical reactions between the participating species, in the presence of a selective droplet interface. Special attention is paid to the dynamic symmetry breaking between the mass of the two species entrapped within the expanding droplet as a function of time.

Multisensor monitoring of monuments: measurement of vibration frequencies

This paper presents the results of an experiment aiming to measure the vibrational frequencies of the main structures of the medieval church of San Domenico (Matera, southern Italy) and relate them to the mechanical properties of geological stratigraphy and construction materials. Vibrational frequencies are measured by means of the ground-based radar inteferometry technique using a Ku-band radar. Time series of ground-based radar data are processed to measure displacements and vibration frequencies of the church structures.

Benchmarking multi-GPU applications on modern multi-GPU integrated systems

GPUs are very powerful computing accelerators that are often employed in single-device configuration. However, there is a steadily growing interest in using multiple GPUs in a concurrent way both to overcome the memory limitations of the single device and to further reduce execution times. Until recently, communication among GPUs had been carried out mainly by using networking technologies originally devised for standard CPUs with the CPU playing an active role in the communication.

A free boundary model for the evolution of a geothermal system

The evolution of a geothermal system is studied. A mathematical model is proposed and the corresponding free boundary problem is formulated in a one-dimensional geometry. A situation corresponding to the geothermal field in Larderello, Tuscany (Italy) is considered, showing that the problem has two characteristic time scales, related to the motion of interface and diffusion of vapor.

Uniform weighted approximation by multivariate filtered polynomials

The paper concerns the weighted uniform approximation of a real function on the d-cube [-1, 1]^d, with d > 1, by means of some multivariate filtered polynomials. These polynomials have been deduced, via tensor product, from certain de la Vallée Poussin type means on [-1, 1], which generalize classical delayed arithmetic means of Fourier partial sums. They are based on arbitrary sequences of filter coefficients, not necessarily connected with a smooth filter function.

A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws,

-- We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and suciently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.