Lattice Boltzmann modeling of water-like fluids

We review recent advances on the mesoscopic modeling of water-like fluids, based on the lattice Boltzmann (LB) methodology. The main idea is to enrich the basic LB (hydro)-dynamics with angular degrees of freedom responding to suitable directional potentials between water-like molecules. The model is shown to reproduce some microscopic features of liquid water, such as an average number of hydrogen bonds per molecules (HBs) between 3 and 4, as well as a qualitatively correct statistics of the hydrogen bond angle as a function of the temperature.

Regularized lattice BGK versus highly accurate spectral methods for cavity flow simulations

The regularized lattice BGK (RLBGK) is validated against high-accuracy spectral Chebyshev methods for lid-driven cavity flows. RLBGK is shown to provide a viable alternative to standard lattice BGK schemes, with significant enhancement of numerical stability at a very moderate computational extra-cost. © 2014 World Scientific Publishing Company.

Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points.