Spin-orbit precession along eccentric orbits: Improving the knowledge of self-force corrections and of their effective-one-body counterparts
The (first-order) gravitational self-force correction to the spin-orbit precession of a spinning compact body along a slightly eccentric orbit around a Schwarzschild black hole is computed through the ninth postNewtonian order and to second order in the eccentricity, improving recent results by Kavanagh et al. [Phys. Rev. D 96, 064012 (2017)]. We show that our higher-accurate theoretical estimates of the spin precession exhibits an improved agreement with corresponding numerical self-force data.






