De la Vallée Poussin interpolation method for image resizing

The aim of this talk is to show how de la Vallee Poussin type interpolation based on Chebyshev zeros of rst kind, can be applied to resize an arbitrary color digital image. In fact, using such kind of approximation, we get an image scaling method running for any desired scaling factor or size, in both downscaling and upscaling. The peculiarities and the performance of such method will be discussed.

Double Life of Methanol: Experimental Studies and Nonequilibrium Molecular-Dynamics Simulation of Methanol Effects on Methane-Hydrate Nucleation

We have investigated systematically and statistically methanol-concentration effects on methane-hydrate nucleation using both experiment and restrained molecular-dynamics simulation, employing simple observables to achieve an initially homogeneous methane-supersaturated solution particularly favorable for nucleation realization in reasonable simulation times.

Flexoelectric switching in cholesteric blue phases

We present computer simulations of the response of a flexoelectric blue phase network, either in bulk or under confinement, to an applied field. We find a transition in the bulk between the blue phase I disclination network and a parallel array of disclinations along the direction of the applied field. Upon switching off the field, the system is unable to reconstruct the original blue phase but gets stuck in a metastable phase. Blue phase II is comparatively much less affected by the field.

Existence of Isoperimetric Sets with Densities "Converging from Below" on RN

In this paper, we consider the isoperimetric problem in the space R with a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f<= a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331-365, 2013.

Bistable defect structures in blue phase devices

Blue phases are liquid crystals made up by networks of defects, or disclination lines. While existing phase diagrams show a striking variety of competing metastable topologies for these networks, very little is known as to how to kinetically reach a target structure, or how to switch from one to the other, which is of paramount importance for devices. We theoretically identify two confined blue phase I systems in which by applying an appropriate series of electric field it is possible to select one of two bistable defect patterns.

Switching and defect dynamics in multistable liquid crystal devices

We investigate the switching dynamics of multistable nematic liquid crystal devices. In particular, we identify a remarkably simple two-dimensional device which exploits hybrid alignment at the surfaces to yield a bistable response. We also consider a three-dimensional tristable nematic device with patterned anchoring, recently implemented in practice, and discuss how the director and disclination patterns change during switching.

Continuum theory of phase separation kinetics for active brownian particles

Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation.