De la Vallée Poussin interpolation method for image resizing

The aim of this talk is to show how de la Vallee Poussin type interpolation based on Chebyshev zeros of rst kind, can be applied to resize an arbitrary color digital image. In fact, using such kind of approximation, we get an image scaling method running for any desired scaling factor or size, in both downscaling and upscaling. The peculiarities and the performance of such method will be discussed.

Bistable defect structures in blue phase devices

Blue phases are liquid crystals made up by networks of defects, or disclination lines. While existing phase diagrams show a striking variety of competing metastable topologies for these networks, very little is known as to how to kinetically reach a target structure, or how to switch from one to the other, which is of paramount importance for devices. We theoretically identify two confined blue phase I systems in which by applying an appropriate series of electric field it is possible to select one of two bistable defect patterns.

Cardiac function in adolescents and young adults with 22q11.2 deletion syndrome without congenital heart disease

Background Diagnosis and treatment of 22q11.2 deletion syndrome (22q11.2DS) have led to improved life expectancy and achievement of adulthood. Limited data on long-term outcomes reported an increased risk of premature death for cardiovascular causes, even without congenital heart disease (CHD).

The Knapsack Problem with forfeit sets

This work introduces a novel extension of the 0/1 Knapsack Problem in which we consider the existence of so-called forfeit sets. A forfeit set is a subset of items of arbitrary cardinality, such that including a number of its elements that exceeds a predefined allowance threshold implies some penalty costs to be paid in the objective function value. A global upper bound on these allowance violations is also considered.

Flexoelectric switching in cholesteric blue phases

We present computer simulations of the response of a flexoelectric blue phase network, either in bulk or under confinement, to an applied field. We find a transition in the bulk between the blue phase I disclination network and a parallel array of disclinations along the direction of the applied field. Upon switching off the field, the system is unable to reconstruct the original blue phase but gets stuck in a metastable phase. Blue phase II is comparatively much less affected by the field.

Computing Gaussian quadrature rules with high relative accuracy

The computation of n-point Gaussian quadrature rules for symmetric weight functions is considered in this paper. It is shown that the nodes and the weights of the Gaussian quadrature rule can be retrieved from the singular value decomposition of a bidiagonal matrix of size n/2. The proposed numerical method allows to compute the nodes with high relative accuracy and a computational complexity of O(n). We also describe an algorithm for computing the weights of a generic Gaussian quadrature rule with high relative accuracy. Numerical examples show the effectiveness of the proposed approach.

Convergence in probability of the Mallows and GCV wavelet and Fourier regularization methods

Wavelet and Fourier regularization methods are effective for the nonparametric regression problem. We prove that the loss function evaluated for the regularization parameter chosen through GCV or Mallows criteria is asymptotically equivalent in probability to its minimum over the regularization parameter. © 2001 Elsevier Science B.V.