Continuum theory of phase separation kinetics for active brownian particles

Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation.

Non-local torsion functions and embeddings

Given (Formula presented.), we discuss the embedding of (Formula presented.) in (Formula presented.). In particular, for (Formula presented.) we deduce its compactness on all open sets (Formula presented.) on which it is continuous. We then relate, for all q up the fractional Sobolev conjugate exponent, the continuity of the embedding to the summability of the function solving the fractional torsion problem in (Formula presented.) in a suitable weak sense, for every open set (Formula presented.).

Bistable defect structures in blue phase devices

Blue phases are liquid crystals made up by networks of defects, or disclination lines. While existing phase diagrams show a striking variety of competing metastable topologies for these networks, very little is known as to how to kinetically reach a target structure, or how to switch from one to the other, which is of paramount importance for devices. We theoretically identify two confined blue phase I systems in which by applying an appropriate series of electric field it is possible to select one of two bistable defect patterns.

Existence of Isoperimetric Sets with Densities "Converging from Below" on RN

In this paper, we consider the isoperimetric problem in the space R with a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f<= a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331-365, 2013.