Flexoelectric switching in cholesteric blue phases

We present computer simulations of the response of a flexoelectric blue phase network, either in bulk or under confinement, to an applied field. We find a transition in the bulk between the blue phase I disclination network and a parallel array of disclinations along the direction of the applied field. Upon switching off the field, the system is unable to reconstruct the original blue phase but gets stuck in a metastable phase. Blue phase II is comparatively much less affected by the field.

Continuum theory of phase separation kinetics for active brownian particles

Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation.

Bistable defect structures in blue phase devices

Blue phases are liquid crystals made up by networks of defects, or disclination lines. While existing phase diagrams show a striking variety of competing metastable topologies for these networks, very little is known as to how to kinetically reach a target structure, or how to switch from one to the other, which is of paramount importance for devices. We theoretically identify two confined blue phase I systems in which by applying an appropriate series of electric field it is possible to select one of two bistable defect patterns.

Switching and defect dynamics in multistable liquid crystal devices

We investigate the switching dynamics of multistable nematic liquid crystal devices. In particular, we identify a remarkably simple two-dimensional device which exploits hybrid alignment at the surfaces to yield a bistable response. We also consider a three-dimensional tristable nematic device with patterned anchoring, recently implemented in practice, and discuss how the director and disclination patterns change during switching.

Mathematical model of insulin kinetics accounting for the amino acids effect during a mixed meal tolerance test

Amino acids (AAs) are well known to be involved in the regulation of glucose metabolism and, in particular, of insulin secretion. However, the effects of different AAs on insulin release and kinetics have not been completely elucidated. The aim of this study was to propose a mathematical model that includes the effect of AAs on insulin kinetics during a mixed meal tolerance test. To this aim, five different models were proposed and compared.

Schrödinger operators with negative potentials and Lane-Emden densities

We consider the Schrödinger operator -?+V for negative potentials V, on open sets with positive first eigenvalue of the Dirichlet-Laplacian. We show that the spectrum of -?+V is positive, provided that V is greater than a negative multiple of the logarithmic gradient of the solution to the Lane-Emden equation -?u=u (for some 1<=q<2). In this case, the ground state energy of -?+V is greater than the first eigenvalue of the Dirichlet-Laplacian, up to an explicit multiplicative factor. This is achieved by means of suitable Hardy-type inequalities, that we prove in this paper.

Non-local torsion functions and embeddings

Given (Formula presented.), we discuss the embedding of (Formula presented.) in (Formula presented.). In particular, for (Formula presented.) we deduce its compactness on all open sets (Formula presented.) on which it is continuous. We then relate, for all q up the fractional Sobolev conjugate exponent, the continuity of the embedding to the summability of the function solving the fractional torsion problem in (Formula presented.) in a suitable weak sense, for every open set (Formula presented.).

Convexity properties of dirichlet integrals and picone-type inequalities

We focus on three different convexity principles for local and nonlocal variational integrals. We prove various generalizations of them, as well as their equivalences. Some applications to nonlinear eigenvalue problems and Hardy-type inequalities are given. We also prove a measure-theoretic minimum principle for nonlocal and non- linear positive eigenfunctions.