De la Vallée Poussin interpolation method for image resizing

The aim of this talk is to show how de la Vallee Poussin type interpolation based on Chebyshev zeros of rst kind, can be applied to resize an arbitrary color digital image. In fact, using such kind of approximation, we get an image scaling method running for any desired scaling factor or size, in both downscaling and upscaling. The peculiarities and the performance of such method will be discussed.

The Knapsack Problem with forfeit sets

This work introduces a novel extension of the 0/1 Knapsack Problem in which we consider the existence of so-called forfeit sets. A forfeit set is a subset of items of arbitrary cardinality, such that including a number of its elements that exceeds a predefined allowance threshold implies some penalty costs to be paid in the objective function value. A global upper bound on these allowance violations is also considered.

Computing Gaussian quadrature rules with high relative accuracy

The computation of n-point Gaussian quadrature rules for symmetric weight functions is considered in this paper. It is shown that the nodes and the weights of the Gaussian quadrature rule can be retrieved from the singular value decomposition of a bidiagonal matrix of size n/2. The proposed numerical method allows to compute the nodes with high relative accuracy and a computational complexity of O(n). We also describe an algorithm for computing the weights of a generic Gaussian quadrature rule with high relative accuracy. Numerical examples show the effectiveness of the proposed approach.

Non-local torsion functions and embeddings

Given (Formula presented.), we discuss the embedding of (Formula presented.) in (Formula presented.). In particular, for (Formula presented.) we deduce its compactness on all open sets (Formula presented.) on which it is continuous. We then relate, for all q up the fractional Sobolev conjugate exponent, the continuity of the embedding to the summability of the function solving the fractional torsion problem in (Formula presented.) in a suitable weak sense, for every open set (Formula presented.).

Continuum theory of phase separation kinetics for active brownian particles

Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation.

The Fitness-Corrected Block Model, or how to create maximum-entropy data-driven spatial social networks

Models of networks play a major role in explaining and reproducing empirically observed patterns. Suitable models can be used to randomize an observed network while preserving some of its features, or to generate synthetic graphs whose properties may be tuned upon the characteristics of a given population. In the present paper, we introduce the Fitness-Corrected Block Model, an adjustable-density variation of the well-known Degree-Corrected Block Model, and we show that the proposed construction yields a maximum entropy model.

Mathematical model of insulin kinetics accounting for the amino acids effect during a mixed meal tolerance test

Amino acids (AAs) are well known to be involved in the regulation of glucose metabolism and, in particular, of insulin secretion. However, the effects of different AAs on insulin release and kinetics have not been completely elucidated. The aim of this study was to propose a mathematical model that includes the effect of AAs on insulin kinetics during a mixed meal tolerance test. To this aim, five different models were proposed and compared.