Direct evidence of plastic events and dynamic heterogeneities in soft-glasses
By using fluid-kinetic simulations of confined and concentrated emulsion droplets, we investigate the nature of space non-homogeneity in soft-glassy dynamics and provide quantitative measurements of the statistical features of plastic events in the proximity of the yield-stress threshold. Above the yield stress, our results show the existence of a finite stress correlation scale, which can be mapped directly onto the cooperativity scale, recently introduced in the literature to capture non-local effects in the soft-glassy dynamics.
Automated restoration of semi-transparent degradation via Lie groups and visibility laws
This paper presents a novel approach for the removal of semi-transparent defects from images of historical or artistic importance. It combines Lie group transformations with human perception rules in order to make restoration more flexible and adaptable to defects having different physical or mechanical causes. In particular, the restoration process consists of an iterative procedure that gradually reduces the visual perception of the defect.
Towards a liquid self: How time, geography, and life experiences reshape the biological identity
The conceptualization of immunological self is amongst the most important theories of modern biology, representing a sort of theoretical guideline for experimental immunologists, in order to understand how host constituents are ignored by the immune system (IS). A consistent advancement in this field has been represented by the danger/damage theory and its subsequent refinements, which at present represents the most comprehensive conceptualization of immunological self. Here, we present the new hypothesis of "liquid self," which integrates and extends the danger/damage theory.
IMPROVED APPROXIMATION OF MAXIMUM VERTEX COVERAGE PROBLEM ON BIPARTITE GRAPHS
Given a simple undirected graph G and a positive integer s, the maximum vertex coverage problem (MVC) is the problem of finding a set U of s vertices of G such that the number of edges having at least one endpoint in U is as large as possible. The problem is NP-hard even in bipartite graphs, as shown in two recent papers [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37-48; G. Joret and A. Vetta, Reducing the Rank of a Matroid, preprint, arXiv: 1211.4853v1 [cs.DS], 2012].
Bubbling reduces intermittency in turbulent thermal convection
Intermittency effects are numerically studied in turbulent bubbling Rayleigh-Benard (RB) flow and compared to the standard RB case. The vapour bubbles are modelled with a Euler-Lagrangian scheme and are two-way coupled to the flow and temperature fields, both mechanically and thermally. To quantify the degree of intermittency we use probability density functions, structure functions, extended self-similarity (ESS) and generalized extended self-similarity (GESS) for both temperature and velocity differences.
A Multiperiod Maximal Covering Location Model for the Optimal Location of Intersection Safety Cameras on an Urban Traffic Network
In this paper we propose a multiperiod optimization model based on the maximal covering location problem in order to support safety policies within urban areas. In particular, we focus on the field of car accidents control, by considering the problem of the optimal location of intersection safety cameras (ISC) on an urban traffic network to maximize road control and reduce the number and the impact of car accidents. The effectiveness of accidents prevention programs can be increased by changing periodically the position of the available ISCs on a given time horizon.
GAUSS-DIFFUSION PROCESSES FOR MODELING THE DYNAMICS OF A COUPLE OF INTERACTING NEURONS
With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times.