Pathways identification in cancer survival analysis by network-based Cox models

Gene expression data from high-throughput assays, such as microarray, are often used to predict cancer survival. However, available datasets consist of a small number of samples (n patients) and a large number of gene expression data (p predictors). Therefore, the main challenge is to cope with the high-dimensionality. Moreover, genes are co-regulated and their expression levels are expected to be highly correlated. In order to face these two issues, network based approaches have been proposed.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Rate equation leading to hype-type evolution curves: a mathematical approach in view of analysing technology development

The theoretical understanding of Gartner's "hype curve" is an interesting open question in deciding the strategic actions to adopt in presence of an incoming technology. In order to describe the hype behaviour quantitatively, we propose a mathematical approach based on a rate equation, similar to that used to describe quantum level transitions. The model is able to describe the hype curve evolution in many relevant conditions, which can be associated to various market parameters.

Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers

Marine propellers in behind-hull conditions develop, in addition to thrust and torque, in-plane loads that are strictly related to fatigue stress of the propulsive shaft bearings, hull-induced vibrations and the dynamic response of the ship while maneuvering or experiencing wave induced motions. An in-depth understanding of their nature as well as their quantification in typical design and off-design operative scenario is fundamental for improving ship design criteria.

Additive model selection

We study sparse high dimensional additive model fitting via penalization with sparsity-smoothness penalties. We review several existing algorithms that have been developed for this problem in the recent literature, highlighting the connections between them, and present some computationally efficient algorithms for fitting such models. Furthermore, using reasonable assumptions and exploiting recent results on group LASSO-like procedures, we take advantage of several oracle results which yield asymptotic optimality of estimators for high-dimensional but sparse additive models.

Dynamics and rheology of cells and vesicles in shear flow

A deep understanding of the dynamics and rheology of suspensions of vesicles, cells, and capsules is relevant for different applications, ranging from soft glasses to blood flow [1]. I will present the study of suspensions of fluid vesicles by a combination of molecular dynamics and mesoscale hydrodynamics simulations (multi-particle collision dynamics) in two dimensions [2], pointing out the big potential of the numerical method to address problems in soft matter.

A Multiperiod Maximal Covering Location Model for the Optimal Location of Intersection Safety Cameras on an Urban Traffic Network

In this paper we propose a multiperiod optimization model based on the maximal covering location problem in order to support safety policies within urban areas. In particular, we focus on the field of car accidents control, by considering the problem of the optimal location of intersection safety cameras (ISC) on an urban traffic network to maximize road control and reduce the number and the impact of car accidents. The effectiveness of accidents prevention programs can be increased by changing periodically the position of the available ISCs on a given time horizon.