DSMC-LBM mapping scheme for rarefied and non-rarefied gas flows

We present the formulation of a kinetic mapping scheme between the Direct Simulation Monte Carlo (DSMC) and the Lattice Boltzmann Method (LBM) which is at the basis of the hybrid model used to couple the two methods in view of efficiently and accurately simulate isothermal flows characterized by variable rarefaction effects. Owing to the kinetic nature of the LBM, the procedure we propose ensures to accurately couple DSMC and LBM at a larger Kn number than usually done in traditional hybrid DSMC--Navier-Stokes equation models.

Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers

Marine propellers in behind-hull conditions develop, in addition to thrust and torque, in-plane loads that are strictly related to fatigue stress of the propulsive shaft bearings, hull-induced vibrations and the dynamic response of the ship while maneuvering or experiencing wave induced motions. An in-depth understanding of their nature as well as their quantification in typical design and off-design operative scenario is fundamental for improving ship design criteria.

Minimal kinetic theory: A mathematical framework for non-equilibrium flowing matter

We discuss the intriguing ability of minimal kinetic theory to describe a broad variety of complex non-equilibrium flows across scales of motion. It is argued that, besides major computational progress, minimal kinetic theory also provides a new conceptual framework to investigate the complexities of flowing matter far from equilibrium.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Rate equation leading to hype-type evolution curves: a mathematical approach in view of analysing technology development

The theoretical understanding of Gartner's "hype curve" is an interesting open question in deciding the strategic actions to adopt in presence of an incoming technology. In order to describe the hype behaviour quantitatively, we propose a mathematical approach based on a rate equation, similar to that used to describe quantum level transitions. The model is able to describe the hype curve evolution in many relevant conditions, which can be associated to various market parameters.

Lattice kinetic approach to non-equilibrium flows

We present a Lattice Boltzmann method for the simulation of a wide range of Knudsen regimes. The method is assessed in terms of normalised discharge for flow across parallel plates and three-dimensional flows in porous media. Available analytical solutions are well reproduced, supporting the the method as an appealing candidate to bridge the gap between the hydrodynamic regime and free molecular motion.

Axisymmetric multiphase lattice Boltzmann method for generic equations of state

We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid-gas density ratios up to 10(3). Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymrnetric multiphase conservation equations. We validate the model by showing that a stationary droplet obeys the Young-Laplace law, comparing the second oscillation mode of a droplet with respect to an analytical solution and showing correct mass conservation of a propagating density wave.

OpenCAPWAP v2.0: the new open-source implementation of the CAPWAP protocol

We present the latest version of OpenCAPWAP, our open-source implementation of the Internet Engineering Task Force control and provisioning of wireless access point (CAPWAP) protocol. The CAPWAP protocol is designed to support centralized management of large-scale and heterogeneous wireless networks, with a special focus on IEEE 802.11-based networks. The implementation presented in this paper improves substantially on the previous version, adding full support for the Split MAC architecture and decoupling completely the implementation from a specific driver solution.

Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black hole

Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordström black hole are investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the solution is used to compute the self-field (up to 7.5 post-Newtonian order) as well as the components of the self-force at the particle's location. The energy fluxes radiated to infinity and down the hole are also evaluated. Comparison with previous numerical results in the Schwarzschild case shows a reasonable agreement in both strong field and weak field regimes.