Motor learning induces changes in MEG resting-state oscillatory network dynamics

Motor learning induces changes in resting-state (RS) network properties in fronts-parietal (Albert et al, 2009) and sensorimotor (Taubert et al, 2011) networks. This study explores the putative modulations of spontaneous resting-state oscillations following a sensori-motor learning task. The task consisted in lifting a load with the right hand, which triggered the unloading of a load suspended to the left forearm (Paulignan et al., 1989). Because learning stabilizes quickly, a temporal delay was implemented, hence placing the subject in a dynamic learning state.

Lattice kinetic approach to non-equilibrium flows

We present a Lattice Boltzmann method for the simulation of a wide range of Knudsen regimes. The method is assessed in terms of normalised discharge for flow across parallel plates and three-dimensional flows in porous media. Available analytical solutions are well reproduced, supporting the the method as an appealing candidate to bridge the gap between the hydrodynamic regime and free molecular motion.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers

Marine propellers in behind-hull conditions develop, in addition to thrust and torque, in-plane loads that are strictly related to fatigue stress of the propulsive shaft bearings, hull-induced vibrations and the dynamic response of the ship while maneuvering or experiencing wave induced motions. An in-depth understanding of their nature as well as their quantification in typical design and off-design operative scenario is fundamental for improving ship design criteria.

Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains

The RapidCell (RC) model was originally developed to simulate flagellar bacterial chemotaxis in environments with spatiotemporally varying chemoattractant gradients. RC is best suited for motility simulations in unbounded nonfluid environments; this limits its use in biomedical applications hinging on bacteria-fluid dynamics in microchannels. In this study, we eliminated this constraint by coupling the RC model with the colloidal lattice Boltzmann (LB) model.

Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods.

Integration of InSAR Analysis and Numerical Modeling for the Assessment of Ground Subsidence in the City of Lisbon, Portugal

In this work, we exploit the integration of an advanced synthetic aperture radar (SAR) interferometry technique and the application of the finite-element method for the assessment and the interpretation of a localized subsidence phenomenon that took place within a specific area of Lisbon, Portugal. SAR images over the Lisbon city, covering different time intervals in the period of 1995-2010, were acquired and processed by means of the persistent scatterers (PSs) technique.