Nondestructive evaluation of spatially varying internal heat transfer coefficients in a tube

We derive a rule for the reconstruction of the internal heat transfer coefficient hint of a pipe, from temperature maps collected on the external face. The pipe is subjected to internal heating by connecting two electrodes to the external surface. To estimate hint we apply the perturbation theory to a thin plate approximation of a boundary value problem for the stationary heat equation.[object Object]

Spread of consensus in self-organized groups of individuals: Hydrodynamics matters

Nature routinely presents us with spectacular demonstrations of organization and orchestrated motion in living species. Efficient information transfer among the individuals is known to be instrumental to the emergence of spatial patterns (e.g. V-shaped formations for birds or diamond-like shapes for fishes), responding to a specific functional goal such as predatory avoidance or energy savings. Such functional patterns materialize whenever individuals appoint one of them as a leader with the task of guiding the group towards a prescribed target destination.

Lattice kinetic approach to non-equilibrium flows

We present a Lattice Boltzmann method for the simulation of a wide range of Knudsen regimes. The method is assessed in terms of normalised discharge for flow across parallel plates and three-dimensional flows in porous media. Available analytical solutions are well reproduced, supporting the the method as an appealing candidate to bridge the gap between the hydrodynamic regime and free molecular motion.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers

Marine propellers in behind-hull conditions develop, in addition to thrust and torque, in-plane loads that are strictly related to fatigue stress of the propulsive shaft bearings, hull-induced vibrations and the dynamic response of the ship while maneuvering or experiencing wave induced motions. An in-depth understanding of their nature as well as their quantification in typical design and off-design operative scenario is fundamental for improving ship design criteria.

Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains

The RapidCell (RC) model was originally developed to simulate flagellar bacterial chemotaxis in environments with spatiotemporally varying chemoattractant gradients. RC is best suited for motility simulations in unbounded nonfluid environments; this limits its use in biomedical applications hinging on bacteria-fluid dynamics in microchannels. In this study, we eliminated this constraint by coupling the RC model with the colloidal lattice Boltzmann (LB) model.

Speeding up a Rollout algorithm for complex parallel machine scheduling

Rollout methodology is a constructive metaheuristic algorithm and its main characteristics are its modularity, the adaptability to different objectives and constraints and the easiness of implementation. Multi-heuristic Rollout extends the Rollout by incorporating several constructive heuristics in the Rollout framework and it is able to easily incorporate human experience inside its research patterns to fulfil complex requirements dictated by the application at hand. However, a drawback for both Rollout and multi-heuristic Rollout is often represented by the required computation time.

Blending Brownian motion and heat equation

In this short communication we present an original way to couple the Brownian motion and the heat equation. More in general, we suggest a way for coupling the Langevin equation for a particle, which describes a single realization of its trajectory, with the associated Fokker-Planck equation, which instead describes the evolution of the particle's probability density function. Numerical results show that it is indeed possible to obtain a regularized Brownian motion and a Brownianized heat equation still preserving the global statistical properties of the solutions.