Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy's flows

It is shown that the single relaxation time (SRT) version of the Lattice Boltzmann (LB) equation permits to compute the permeability of Darcy's flows in porous media within a few percent accuracy. This stands in contrast with previous claims of inaccuracy, which we relate to the lack of recognition of the physical dependence of the permeability on the Knudsen number.

Preferential Rotation of Chiral Dipoles in Isotropic Turbulence

We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers

Marine propellers in behind-hull conditions develop, in addition to thrust and torque, in-plane loads that are strictly related to fatigue stress of the propulsive shaft bearings, hull-induced vibrations and the dynamic response of the ship while maneuvering or experiencing wave induced motions. An in-depth understanding of their nature as well as their quantification in typical design and off-design operative scenario is fundamental for improving ship design criteria.

MRI denoising by nonlocal means on multi-GPU

A critical issue in image restoration is noise removal, whose state-of-art algorithm, NonLocal Means, is highly demanding in terms of computational time. Aim of the present paper is to boost its performance by an efficient algorithm tailored to GPU hardware architectures. This algorithm adapts itself to several variants of the methodologies in terms of different strategies for estimating the involved filtering parameter, type of noise affecting data, multicomponent signals, spatial dimension of the images. Numerical experiments on brain Magnetic Resonance images are provided.

Spread of consensus in self-organized groups of individuals: Hydrodynamics matters

Nature routinely presents us with spectacular demonstrations of organization and orchestrated motion in living species. Efficient information transfer among the individuals is known to be instrumental to the emergence of spatial patterns (e.g. V-shaped formations for birds or diamond-like shapes for fishes), responding to a specific functional goal such as predatory avoidance or energy savings. Such functional patterns materialize whenever individuals appoint one of them as a leader with the task of guiding the group towards a prescribed target destination.

Comparing first-order microscopic and macroscopic crowd models for an increasing number of massive agents

A comparison between first-order microscopic and macroscopic differential models of crowd dynamics is established for an increasing number N of pedestrians. The novelty is the fact of considering massive agents, namely, particles whose individual mass does not become infinitesimal when N grows. This implies that the total mass of the system is not constant but grows with N. The main result is that the two types of models approach one another in the limit N -> ?, provided the strength and/or the domain of pedestrian interactions are properly modulated by N at either scale.

Invisible control of self-organizing agents leaving unknown environments

In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term, accounting for the herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore the environment under limited visibility. We consider both metrical and topological interactions.

Bridging InSAR and GPS Tomography: A New Differential Geometrical Constraint

The integration of interferometric synthetic aperture radar (InSAR) and GPS tomography techniques for the estimation of the 3-D distribution of atmosphere refractivity is discussed. A methodology to use the maps of the temporal changes of precipitable water vapor (PWV) provided by InSAR as a further constraint in the GPS tomography is described. The aim of the methodology is to increase the accuracy of the GPS tomography reconstruction of the atmosphere's refractivity. The results, which are obtained with SAR and GPS data acquired over the Lisbon area, Portugal, are presented and assessed.