CUDA Leaks: A Detailed Hack for CUDA and a (Partial) Fix

Graphics processing units (GPUs) are increasingly common on desktops, servers, and embedded platforms. In this article, we report on new security issues related to CUDA, which is the most widespread platform for GPU computing. In particular, details and proofs-of-concept are provided about novel vulnerabilities to which CUDA architectures are subject. We show how such vulnerabilities can be exploited to cause severe information leakage. As a case study, we experimentally show how to exploit one of these vulnerabilities on a GPU implementation of the AES encryption algorithm.

Alterdroid: Differential fault analysis of obfuscated smartphone malware

Malware for smartphones has rocketed over the last years. Market operators face the challenge of keeping their stores free from malicious apps, a task that has become increasingly complex as malware developers are progressively using advanced techniques to defeat malware detection tools. One such technique commonly observed in recent malware samples consists of hiding and obfuscating modules containing malicious functionality in places that static analysis tools overlook (e.g., within data objects).

Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework.

AntiCheetah: an Autonomic Multi-round Approach for Reliable Computing

Outsourced computing is increasingly popular thanks to the effectiveness and convenience of cloud computing *-as-a-Service offerings. However, cloud nodes can potentially misbehave in order to save resources. As such, some guarantee over the correctness and availability of results is needed. Exploiting the redundancy of cloud nodes can be of help, even though smart cheating strategies render the detection and correction of fake results much harder to achieve in practice.

A MATHEMATICAL MODEL FOR THE ENHANCED CYTOPLASMIC TRANSPORT How to Get (Faster) to the Nucleus

We consider a simple model for signal transport in the cytoplasm. Following some recent experimental evidences, the standard diffusion model is supplemented by advection operated through an attachement/detachement mechanism along microtubules. This model is given by a system of partial differential equations which are cast in different dimensions and connected by suitable exchange rules. A numerical scheme is introduced and some simulations are presented and discussed to show the performances of our model.

On the nonlinear stability of a continuous duopoly model with constant conjectural variation

The paper concerns a continuous model governed by a ODE system originated by a discrete duopoly model with bounded rationality, based on constant conjectural variation. The aim of the paper is to show (i) the existence of an absorbing set in the phase space; (ii) linear stability analysis of the critical points of the system; (iii) nonlinear, global asymptotic stability of equilibrium of constant conjectural variation.

Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration

The turning circle manoeuvre of a naval supply vessel (characterized by a block coefficient <sup>CB</sup>~0.60) is simulated by the integration of the unsteady Reynolds-Averaged Navier Stokes equations coupled with the equations of rigid body motion with six degrees of freedom. The model is equipped with all the appendages, and it is characterised by an unusual single rudder/twin screws configuration. This arrangement causes poor directional stability qualities, which makes the prediction of the trajectory a challenging problem.