Alterdroid: Differential fault analysis of obfuscated smartphone malware

Malware for smartphones has rocketed over the last years. Market operators face the challenge of keeping their stores free from malicious apps, a task that has become increasingly complex as malware developers are progressively using advanced techniques to defeat malware detection tools. One such technique commonly observed in recent malware samples consists of hiding and obfuscating modules containing malicious functionality in places that static analysis tools overlook (e.g., within data objects).

Three-Dimensional Lattice Pseudo-Potentials for Multiphase Flow Simulations at High Density Ratios

It is shown that the combination of generalized Van der Waals equations of state with high-order discrete velocity lattices, permits to simulate the dynamics of liquid droplets at air-water density ratios, with very moderate levels of spurious currents near the droplet interface. Satisfactory agreement with experimental data on droplet collisions at density ratios of order thousand is reported.

FRoDO: Fraud Resilient Device for Off-line micropayments

Credit and debit card data theft is one of the earliest forms of cybercrime. Still, it is one of the most common nowadays. Attackers often aim at stealing such customer data by targeting the Point of Sale (for short, PoS) system, i.e. the point at which a retailer first acquires customer data. Modern PoS systems are powerful computers equipped with a card reader and running specialized software. Increasingly often, user devices are leveraged as input to the PoS. In these scenarios, malware that can steal card data as soon as they are read by the device has flourished.

CUDA Leaks: A Detailed Hack for CUDA and a (Partial) Fix

Graphics processing units (GPUs) are increasingly common on desktops, servers, and embedded platforms. In this article, we report on new security issues related to CUDA, which is the most widespread platform for GPU computing. In particular, details and proofs-of-concept are provided about novel vulnerabilities to which CUDA architectures are subject. We show how such vulnerabilities can be exploited to cause severe information leakage. As a case study, we experimentally show how to exploit one of these vulnerabilities on a GPU implementation of the AES encryption algorithm.

AntiCheetah: Trustworthy computing in an outsourced (cheating) environment

The increasing need for performing expensive computations has motivated outsourced computing, as in crowdsourced applications leveraging worker cloud nodes. However, these outsourced computing nodes can potentially misbehave or fail. Exploiting the redundancy of nodes can help guaranteeing correctness and availability of results. This entails that reliable distributed computing can be achieved at the expense of convenience.

Cooperativity flows and shear-bandings: a statistical field theory approach

Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the nonlocal nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations.

On a pseudoparabolic regularization of a forward-backward-forward equation

We consider an initial-boundary value problem for a degenerate pseudoparabolic regularization of a nonlinear forward-backward-forward parabolic equation, with a bounded nonlinearity which is increasing at infinity. We prove existence of suitably defined nonnegative solutions of the problem in a space of Radon measures. Solutions satisfy several monotonicity and regularization properties; in particular, their singular part is nonincreasing and may disappear in finite time.

Applications of the vehicle routing problem with time period constraints

This work describes two applications of the vehicle routing problem (VRP) to the design of fixed and periodic routes. The first application is an industrial case in the field of touristic cruise planning where point of interests should be visited within exactly one of multiple time windows on a weekly time basis. The second application is in retail distribution of fuel oils where petrol stations must be refueled with given fuel oil amounts periodically within a given time horizon.

Subsoil decontamination with bioventing: numerical experiments

A mathematical model describing the bioventing technique for the decontamination of pol- luted subsoil will be presented. Bioventing is a biological technique: bacteria remove the contaminant transforming it and oxygen is consumed in the reaction. The numerical model is based on the fluid flow theory in porous media and bacteria population dynamics and it describes: pollutant degradation, oxygen and bacteria concentration. The mathematical model will be numerically solved and the results of some experiments will be presented.