Inertial particle acceleration in strained turbulence
The dynamics of inertial particles in turbulence is modelled and investigated by means of direct numerical simulation of an axisymmetrically expanding homogeneous turbulent strained flow. This flow can mimic the dynamics of particles close to stagnation points. The influence of mean straining flow is explored by varying the dimensionless strain rate parameter Sk(0)/epsilon(0) from 0.2 to 20, where S is the mean strain rate, k(0) and epsilon(0) are the turbulent kinetic energy and energy dissipation rate at the onset of straining.






