On the Galois lattice of bipartite distance hereditary graphs

We give a complete characterization of bipartite graphs having tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a bipartite distance hereditary graph. Relations with the class of Ptolemaic graphs are discussed and exploited to give an alternative proof of the result. (C) 2015 Elsevier B.V. All rights reserved.

Beppo Levi attraverso i ricordi della figlia Emilia

Intervista alla figlia di Beppo Levi (Emilia Resta) in occasione dei 140 anni dalla sua nascita. Nel breve articolo di presentazione viene anche ricordato il fratello di Beppo Levi, Eugenio Elia noto e geniale matematico che ebbe breve vita immolata al fronte durante la Grande Guerra. All'interno dell'articolo viene anche riproposto e riprodotto un lungo e polemico scritto di Beppo Levi, inviato e apparso sotto forma di lettera sul periodico Israel del 30 giugno 1918, che verte sulla nascita dello stato ebraico in Palestina.

Numerical solution of moving boundary problems in glacier flow

Beside geographical and physical characteristics of the environment, mostly temperature changes drive glacier dynamical evolution with subglacial and supraglacial water release or approaching a metastable state. The appearance of subglacial lakes filling bedrock depressions, glacier sliding, crevasses formation and calving are linked climate change sensitive macro-phenomena, where interactions between the interfacing phases are crucial. We shall discuss the mathematical modelling and the numerical simulation of one of the above glacier problems with moving boundary. References A.

Notes on RKDG methods for shallow-water equations in canal networks

PDE models for network flows are used in a number of different applications, including modeling of water channel networks. While the theory and first-order numerics are well developed, there is a lack of high-order schemes. We propose a Runge-Kutta discontinu- ous Galerkin method as an efficient, effective and compact numerical approach for numerical simulations of water flow in open canals. Our numerical tests show the advantages of RKDG over first-order schemes.

A hybrid tree/finite-difference approach for Heston-Hull-White type models

We study a hybrid tree/finite-difference method which permits to obtain efficient and accurate European and American option prices in the Heston Hull-White and Heston Hull-White2d models. Moreover, as a by-product, we provide a new simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.

Minimally Unbalanced Diamond-Free Graphs and Dyck-Paths

A {0, 1}-matrix A is balanced if it does not contain a submatrix of odd order having exactly two 1's per row and per column. A graph is balanced if its clique-matrix is balanced. No characterization of minimally unbalanced graphs is known, and even no conjecture on the structure of such graphs has been posed, contrary to what happened for perfect graphs. In this paper, we provide such a characterization for the class of diamond-free graphs and establish a connection between minimally unbalanced diamond-free graphs and Dyck-paths.

Modellistica matematico-numerica sull'ipotesi di un lago subglaciale alle isole Svalbard

Lo studio dell'idrologia polare e' legato alla glaciologia ma anche alla paleobio- logia e alla bioastronomia, alla planetologia. Per quest'ultima vale la similitudine fra la crosta ghiacciata dei satelliti del pianeta Giove - Europa ed Encelado - e la calotta ghiacciata Antartica, sotto cui scorre, nell'ordine, un oceano d'acqua (da accertare) e una complessa rete idrografica di 379 laghi subglaciali con torrenti col- legati al mare. Lo studio dell'idrologia polare ha un riscontro diretto e propone estrapolazioni sui pianeti.