On the Galois lattice of bipartite distance hereditary graphs
We give a complete characterization of bipartite graphs having tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a bipartite distance hereditary graph. Relations with the class of Ptolemaic graphs are discussed and exploited to give an alternative proof of the result. (C) 2015 Elsevier B.V. All rights reserved.