A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows

In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow.

Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Driven Cavity with Non-uniform Heating of the Bottom Wall

The goal of this article is to study numerically the mixed convection in a differentially heated lid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with multiple relaxation time Lattice Boltzmann (MRT-LBM) model, while the temperature field is obtained by resolution of the energy balance equation using the finite difference method (FDM). First, the model is checked and validated using data from the literature. Validation of the present results with those available in the literature shows a good agreement.

Error bounds for Gauss-Jacobi quadrature rules

Gaussian quadrature has been extensively studied in literature and several error estimates have been proved under dierent smoothness assumptions of the integrand function. In this talk we are going to state a general error estimate for Gauss-Jacobi quadrature, based on the weighted moduli of smoothness introduced by Z. Ditzian and V. Totik in [1]. Such estimate improves a previous result in [1, Theorem 7.4.1] and it includes several error bounds from literature as particular cases.

Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfven waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results.

Rayleigh-Bénard instability in graphene

Motivated by the observation that electrons in graphene, in the hydrodynamic regime of transport, can be treated as a two-dimensional ultrarelativistic gas with very low shear viscosity, we examine the existence of the Rayleigh-Bénard instability in a massless electron-hole plasma. First, we perform a linear stability analysis, derive the leading contributions to the relativistic Rayleigh number, and calculate the critical value above which the instability develops.

Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration

The turning circle manoeuvre of a naval supply vessel (characterized by a block coefficient <sup>CB</sup>~0.60) is simulated by the integration of the unsteady Reynolds-Averaged Navier Stokes equations coupled with the equations of rigid body motion with six degrees of freedom. The model is equipped with all the appendages, and it is characterised by an unusual single rudder/twin screws configuration. This arrangement causes poor directional stability qualities, which makes the prediction of the trajectory a challenging problem.

On the influence of solid-liquid mass transfer in the modelling of drug release from stents

In this paper we present a model of drug release from a drug eluting-stent and the subsequent drug transport in the arterial wall. In order to study the complete process, a two-phase mathematical model describing the transport of a drug between two coupled media of different properties and dimensions is presented. A system of partial differential equations describes both the solid-liquid transfer (dissolution) and diffusion processes in the polymeric substrate as well as diffusion, convection and reaction in the tissue layer.

Vortex-Sound Generation and Thrust Unsteadiness in Aft-Finocyl Solid Rocket Motor

The generation of complex vorticity pattern in aft-finocyl solid rocket motors is inves- tigated in this paper by means of full-3D ILES CFD simulations with a high-order/low- dissipation class of centered numerical schemes with oscillation control and an immersed boundary treatment of the propellant grain surface, treated with a level-set approach. The development of vortical/shear structures is observed both at the motor axis, immediately downstream the igniter and across the finocyl region and in the submergence region.