Innovative remote-sensed thermodynamical indices to identify vegetation stress and surface dryness: application to southern Italy over the last decade

Surface and vegetation monitoring is a key activity in analyzing and understanding how climate change is impacting natural resources. Moreover, identifying vegetation stress using remote-sensed data has proven to be essential in assessing said understanding, as well as in the effort to prevent or act upon extreme phenomena, such as premature land and forest dryness due to summer heatwaves in the Mediterranean area.

A network-constrain Weibull AFT model based on proximal gradient descent method

In this work, we propose and explore a novel network-constraint survival methodology considering the Weibull accelerated failure time (AFT) model combined with a penalized likelihood approach for variable selection and estimation [2]. Our estimator explicitly incorporates the correlation patterns among predictors using a double penalty that promotes both sparsity and the grouping effect. In or- der to solve the structured sparse regression problems we present an efficient iterative computational algorithm based on proximal gradient descent method [1].

Using frames in statistical signal recovering

Overcomplete representations such as wavelets and windowed Fourier expansions have become mainstays of modern statistical data analysis. Here we derive expressions for the mean quadratic risk of shrinkage estimators in the context of general finite frames, which include any fullrank linear expansion of vector data in a finite-dimensional setting. We provide several new results and practical estimation procedures that take into account the geometric correlation structure of frame elements.

The adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes

We study the consistency and the oracle properties of the adaptive Lasso estimator for the coefficients of a linear AR(p) time series with a strictly stationary white noise (not necessarily described by i.i.d. r.v.'s). We apply the results to INAR(p) time series and to the non-parametric inference of the fertility function of a Hawkes point process. We present some numerical simulations to emphasize the advantages of the proposed procedure with respect to more classical ones and finally we apply it to a set of epidemiological data

An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances

In this paper we deal with pedestrian modeling, aiming at simulating crowd behavior in normal and emergency scenarios, including highly congested mass events. We are specifically concerned with a new agent-based, continuous-in-space, discrete-in-time, nondifferential model, where pedestrians have finite size and are compressible to a certain extent. The model also takes into account the pushing behavior appearing at extremely high densities. The main novelty is that pedestrians are not assumed to generate any kind of "field" which governs the dynamics of the others in the space around them.

Learning binary undirected graph in low dimensional regime

Given a random sample drawn from a Multivariate Bernoulli Variable (MBV), we consider the problem of estimating the structure of the undirected graph for which the distribution is pairwise Markov and the parameters' vector of its exponential form. We propose a simple method that provides a closed form estimator of the parameters' vector and through its support also provides an estimate of the undirected graph associated with the MBV distribution. The estimator is proved to be asymptotically consistent but it is feasible only in low-dimensional regimes.

Quantitative Multidimensional Central Limit Theorems for Means of the Dirichlet-Ferguson Measure

The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of distributional properties of expectations with respect to such measure is an important line of research. In this paper we provide explicit upper bounds for the d2, the d3 and the convex distance between vectors whose components are means of the Dirichlet-Ferguson measure and a Gaussian random vector.