Numerical simulation of a compressible gas flow in porous media bioremendiation

In a subsoil bioremediation intervention air or oxygen is injected in the polluted region and then a model for unsaturated porous media it is required, based on the theory of the dynamics of multiphase fluids in porous media. In order to optmize the costs of the intervention it is useful to consider the gas as compressible and this fact introduces nonlinearity in the mathematical model. The physical problem is described by a system of equations and the unknowns are: pollutant; bacteria concentration; oxygen saturation and oxygen pressure.

Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed.

The Malliavin Stein Method For Normal Random Walks with dependent increments

We derive bounds on the Kolmogorov distance between the dis- tribution of a random functional of a {0, 1}-valued random sequence and the normal distribution. Our approach, which relies on the general framework of stochastic analysis for discrete-time normal martingales, extends existing results obtained for independent Bernoulli (or Rademacher) sequences. In particular, we obtain Kolmogorov distance bounds for the sum of normalized random sequences without any independence assumption.

Tuning Minimum-Norm regularization parameters for optimal MEG connectivity estimation

The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical parcellation, to name but a few. Recent studies have emphasized the importance of selecting the regularization parameter in minimum norm estimates with caution, as variations in its value can result in significant differences in connectivity estimates.

The impact of ROI extraction method for MEG connectivity estimation: Practical recommendations for the study of resting state data.

Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis typically requires regions of interest (ROI)-based extraction of measures. M/EEG ROI-derived source activity can be treated in different ways. For instance, it is possible to average each ROI's time series prior to calculating connectivity measures. Alternatively one can compute connectivity maps for each element of the ROI, prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity estimation is still unclear.

Highly automated dipole estimation (HADES)

Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation.

On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity.

This article is concerned with the rigorous justification of the hydrostatic limit for continuously stratified incompressible fluids under the influence of gravity. The main peculiarity of this work with respect to previous studies is that no (regularizing) viscosity contribution is added to the fluid-dynamics equations and only diffusivity effects are included.

An in-vivo validation of ESI methods with focal sources

Electrophysiological source imaging (ESI) aims at reconstructing the precise origin of brain activity from measurements of the electric field on the scalp. Across laboratories/research centers/hospitals, ESI is performed with different methods, partly due to the ill-posedness of the underlying mathematical problem. However, it is difficult to find systematic comparisons involving a wide variety of methods. Further, existing comparisons rarely take into account the variability of the results with respect to the input parameters.