Hydrodynamics of contraction-based motility in a compressible active fluid

Cell motility is crucial to biological functions ranging from wound healing to immune response. The physics of cell crawling on a substrate is by now well understood, whilst cell motion in bulk (cell swimming) is far from being completely characterized. We present here a minimal model for pattern formation within a compressible actomyosin gel, in both 2D and 3D, which shows that contractility leads to the emergence of an actomyosin droplet within a low density background. This droplet then becomes self-motile for sufficiently large motor contractility.

New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: Redshift invariant

The Detweiler-Barack-Sago redshift function for particles moving along slightly eccentric equatorial orbits around a Kerr black hole is currently known up to the second order in eccentricity, second order in spin parameter, and the 8.5 post-Newtonian order. We improve the analytical computation of such a gaugeinvariant quantity by including terms up to the fourth order in eccentricity at the same post-Newtonian approximation level.

Modelling phase separation in amorphous solid dispersions

Much work has been devoted to analysing thermodynamic models for solid dispersions with a view to identifying regions in the phase diagram where amorphous phase separation or drug recrystallization can occur. However, detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space are lacking. Hence theoretical predictions for the timescale over which phase separation occurs in a solid dispersion are not available.

Hypoxia-regulated miRNAs in human mesenchymal stem cells: Exploring the regulatory effects in ischemic disorders

Human mesenchymal/stromal stem cells (hMSC) are the most promising cell source for adult cell therapies in regenerative medicine. Many clinical trials have reported the use of autologous transplantation of hMSCs in several disorders, but with limited results. To exert their potential, hMSCs could exhibit efficient homing and migration toward lesion sites among other effects, but the underlying process is not clear enough. To further increase the knowledge, we studied the co-regulation between hypoxia-regulated genes and miRNAs.

Functional inequalities for marked point processes

In recent years, a number of functional inequalities have been derived for Poisson random measures, with a wide range of applications. In this paper, we prove that such inequalities can be extended to the setting of marked temporal point processes, under mild assumptions on their Papangelou conditional intensity. First, we derive a Poincare inequality. Second, we prove two transportation cost inequalities. The first one refers to functionals of marked point processes with a Papangelou conditional intensity and is new even in the setting of Poisson random measures.

Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels

The rheology of pressure-driven flows of two-dimensional dense monodisperse emulsions in neutral wetting microchannels is investigated by means of mesoscopic lattice Boltzmann simulations, capable of handling large collections of droplets, in the order of several hundreds. The simulations reveal that the fluidization of the emulsion proceeds through a sequence of discrete steps, characterized by yielding events whereby layers of droplets start rolling over each other, thus leading to sudden drops of the relative effective viscosity.

The sparse method of simulated quantiles: An application to portfolio optimization

The sparse multivariate method of simulated quantiles (S-MMSQ) is applied to solve a portfolio optimization problem under value-at-risk constraints where the joint returns follow a multivariate skew-elliptical stable distribution. The S-MMSQ is a simulation-based method that is particularly useful for making parametric inference in some pathological situations where the maximum likelihood estimator is difficult to compute.

Multisensor monitoring of monuments: measurement of vibration frequencies

This paper presents the results of an experiment aiming to measure the vibrational frequencies of the main structures of the medieval church of San Domenico (Matera, southern Italy) and relate them to the mechanical properties of geological stratigraphy and construction materials. Vibrational frequencies are measured by means of the ground-based radar inteferometry technique using a Ku-band radar. Time series of ground-based radar data are processed to measure displacements and vibration frequencies of the church structures.