On Carriers Collaboration in Hub Location Problems

This paper considers a hub location problem where several carriers operate on a shared network to satisfy a given demand represented by a set of commodities. Possible cooperative strategies are studied where carriers can share resources or swap their respective commodities to produce tangible cost savings while fully satisfying the existing demand. Three different collaborative policies are introduced and discussed, and mixed integer programming formulations are provided for each of them.

The sparse method of simulated quantiles: An application to portfolio optimization

The sparse multivariate method of simulated quantiles (S-MMSQ) is applied to solve a portfolio optimization problem under value-at-risk constraints where the joint returns follow a multivariate skew-elliptical stable distribution. The S-MMSQ is a simulation-based method that is particularly useful for making parametric inference in some pathological situations where the maximum likelihood estimator is difficult to compute.

An interface-free multi-scale multi-order model for traffic flow

In this paper we present a new multi-scale method for reproducing traffic flow which couples a first-order macroscopic model with a second-order microscopic model, avoiding any interface or boundary conditions between them. The multi-scale model is characterized by the fact that microscopic and macroscopic descriptions are not spatially separated. On the contrary, the macro-scale is always active while the micro-scale is activated only if needed by the traffic conditions.

Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues

Edge and Fog Computing will be increasingly pervasive in the years to come due to the benefits they bring in many specific use-case scenarios over traditional Cloud Computing. Nevertheless, the security concerns Fog and Edge Computing bring in have not been fully considered and addressed so far, especially when considering the underlying technologies (e.g. virtualization) instrumental to reap the benefits of the adoption of the Edge paradigm. In particular, these virtualization technologies (i.e.

Hydrodynamics of contraction-based motility in a compressible active fluid

Cell motility is crucial to biological functions ranging from wound healing to immune response. The physics of cell crawling on a substrate is by now well understood, whilst cell motion in bulk (cell swimming) is far from being completely characterized. We present here a minimal model for pattern formation within a compressible actomyosin gel, in both 2D and 3D, which shows that contractility leads to the emergence of an actomyosin droplet within a low density background. This droplet then becomes self-motile for sufficiently large motor contractility.

Modelling phase separation in amorphous solid dispersions

Much work has been devoted to analysing thermodynamic models for solid dispersions with a view to identifying regions in the phase diagram where amorphous phase separation or drug recrystallization can occur. However, detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space are lacking. Hence theoretical predictions for the timescale over which phase separation occurs in a solid dispersion are not available.

Modelling drug release from composite capsules and nanoparticles

We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules.