A HYBRID MODEL OF COLLECTIVE MOTION OF DISCRETE PARTICLES UNDER ALIGNMENT AND CONTINUUM CHEMOTAXIS

In this paper we propose and study a hybrid discrete-continuous mathematical model of collective motion under alignment and chemotaxis effect. Starting from paper [23], in which the Cucker-Smale model [22] was coupled with other cell mechanisms, to describe the cell migration and self-organization in the zebrafish lateral line primordium, we introduce a simplified model in which the coupling between an alignment and chemotaxis mechanism acts on a system of interacting particles.

Reputation-Based Composition of Social Web Services

Social Web Services (SWSs) constitute a novel paradigm of service-oriented computing, where Web services, just like humans, sign up in social networks that guarantee, e.g., better service discovery for users and faster replacement in case of service failures. In past work, composition of SWSs was mainly supported by specialised social networks of competitor services and cooperating ones. In this work, we continue this line of research, by proposing a novel SWSs composition procedure driven by the SWSs reputation.

Specifying and Analysing Reputation Systems with a Coordination Language

Reputation systems are nowadays widely used to support decision making in networked systems. Parties in such systems rate each other and use shared ratings to compute reputation scores that drive their interactions. The existence of reputation systems with remarkable differences calls for formal approaches to their analysis. We present a verification methodology for reputation systems that is based on the use of the coordination language Klaim and related analysis tools.

Network-Aware Evaluation Environment for Reputation Systems

Parties of reputation systems rate each other and use ratings to compute reputation scores that drive their interactions. When deciding which reputation model to deploy in a network environment, it is important to find the most suitable model and to determine its right initial configuration. This calls for an engineering approach for describing, implementing and evaluating reputation systems while taking into account specific aspects of both the reputation systems and the networked environment where they will run.

Reputation-Based Cooperation in the Clouds

The popularity of the cloud computing paradigm is opening new opportunities for collaborative computing. In this paper we tackle a fundamental problem in open-ended cloud-based distributed computing platforms, i.e., the quest for potential collaborators. We assume that cloud participants are willing to share their computational resources for shared distributed computing problems, but they are not willing to disclose the details of their resources. Lacking such information, we advocate to rely on reputation scores obtained by evaluating the interactions among participants.

Analysing the Tor Web with High Performance Graph Algorithms

The exploration and analysis of Web graphs has flourished in the recent past, producing a large number of relevant and interesting research results. However, the unique characteristics of the Tor network demand for specific algorithms to explore and analyze it. Tor is an anonymity network that allows offering and accessing various Internet resources while guaranteeing a high degree of provider and user anonymity. So far the attention of the research community has focused on assessing the security of the Tor infrastructure.

A Branch and Price Algorithm to solve the Quickest Multicommodity k-Splittable Flow Problem

In the literature on Network Optimization, k-splittable flows were introduced to enhance modeling accuracy in cases where an upper bound on the number of supporting paths for each commodity needs to be imposed, thus extending the suitability of network flow tools for an increased number of practical applications. Such modeling feature has recently been extended to dynamic flows with the introduction of the novel strongly NP-hard Quickest Multicommodity k-splittable Flow Problem (QMCkFP).