An interface-free multi-scale multi-order model for traffic flow

In this paper we present a new multi-scale method for reproducing traffic flow which couples a first-order macroscopic model with a second-order microscopic model, avoiding any interface or boundary conditions between them. The multi-scale model is characterized by the fact that microscopic and macroscopic descriptions are not spatially separated. On the contrary, the macro-scale is always active while the micro-scale is activated only if needed by the traffic conditions.

Combined effects of fluid type and particle shape on particles flow in microfluidic platforms

Recent numerical analyses to optimize the design of microfluidic devices for more effective entrapment or segregation of surrogate circulating tumor cells (CTCs) from healthy cells have been reported in the literature without concurrently accommodating the non-Newtonian nature of the body fluid and the non-uniform geometric shapes of the CTCs.

Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments

Motility behavior of an engineered chemosensory particle (ECP) in fluidic environments is driven by its responses to chemical stimuli. One of the challenges to understanding such behaviors lies in tracking changes in chemical signal gradients of chemoattractants and ECP-fluid dynamics as the fluid is continuously disturbed by ECP motion. To address this challenge, we introduce a new multiscale numerical model to simulate chemotactic swimming of an ECP in confined fluidic environments by accounting for motility-induced disturbances in spatiotemporal chemoattractant distributions.

Fixation probabilities in weakly compressible fluid flows

Competition between biological species in marine environments is affected by the motion of the surrounding fluid. An effective 2D compressibility can arise, for example, from the convergence and divergence of water masses at the depth at which passively traveling photosynthetic organisms are restricted to live. In this report, we seek to quantitatively study genetics under flow. To this end, we couple an off-lattice agent-based simulation of two populations in 1D to a weakly compressible velocity field--first a sine wave and then a shell model of turbulence.

New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: Redshift invariant

The Detweiler-Barack-Sago redshift function for particles moving along slightly eccentric equatorial orbits around a Kerr black hole is currently known up to the second order in eccentricity, second order in spin parameter, and the 8.5 post-Newtonian order. We improve the analytical computation of such a gaugeinvariant quantity by including terms up to the fourth order in eccentricity at the same post-Newtonian approximation level.

Biomimetic Nanotherapies: Red Blood Cell Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management

Cardiovascular disease is the leading cause of mortality worldwide. Atherosclerosis, one of the most common forms of the disease, is characterized by a gradual formation of atherosclerotic plaque, hardening, and narrowing of the arteries. Nanomaterials can serve as powerful delivery platforms for atherosclerosis treatment. However, their therapeutic efficacy is substantially limited in vivo due to nonspecific clearance by the mononuclear phagocytic system.

The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype

Background A subset of individuals affected by imprinting disorders displays multi-locus imprinting disturbances (MLID). MLID has been associated with maternal-effect variants that alter the maintenance of methylation at germline-derived differentially methylated regions (gDMRs) in early embryogenesis. Pedigrees of individuals with MLID also include siblings with healthy phenotype.

A moving-grid approach for fluid-structure interaction problems with hybrid lattice Boltzmann method

In this paper, we propose a hybrid lattice Boltzmann method (HLBM) for solving fluid-structure interaction problems. The proposed numerical approach is applied to model the flow induced by a vibrating thin lamina submerged in a viscous quiescent fluid. The hydrodynamic force exerted by the fluid on the solid body is described by means of a complex hydrodynamic function, whose real and imaginary parts are determined via parametric analysis. Numerical results are validated by comparison with those from other numerical as well as experimental works available in the literature.

An inversion method based on random sampling for real-time MEG neuroimaging

The MagnetoEncephaloGraphy (MEG) has gained great interest in neurorehabilitation training due to its high temporal resolution. The challenge is to localize the active regions of the brain in a fast and accurate way. In this paper we use an inversion method based on random spatial sampling to solve the real-time MEG inverse problem. Several numerical tests on synthetic but realistic data show that the method takes just a few hundredths of a second on a laptop to produce an accurate map of the electric activity inside the brain. Moreover, it requires very little memory storage.